Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration

Metabolomics is a rapidly growing field consisting of the analysis of a large number of metabolites at a system scale. The two major goals of metabolomics are the identification of the metabolites characterizing each organism state and the measurement of their dynamics under different situations (e.g. pathological conditions, environmental factors). Knowledge about metabolites is crucial for the understanding of most cellular phenomena, but this information alone is not sufficient to gain a comprehensive view of all the biological processes involved. Integrated approaches combining metabolomics with transcriptomics and proteomics are thus required to obtain much deeper insights than any of these techniques alone. Although this information is available, multilevel integration of different 'omics' data is still a challenge. The handling, processing, analysis and integration of these data require specialized mathematical, statistical and bioinformatics tools, and several technical problems hampering a rapid progress in the field exist. Here, we review four main tools for number of users or provided features (MetaCoreTM, MetaboAnalyst, InCroMAP and 3Omics) out of the several available for metabolomic data analysis and integration with other 'omics' data, highlighting their strong and weak aspects; a number of related issues affecting data analysis and integration are also identified and discussed. Overall, we provide an objective description of how some of the main currently available software packages work, which may help the experimental practitioner in the choice of a robust pipeline for metabolomic data analysis and integration.

[1]  Jordi Duran,et al.  A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data , 2012, Metabolites.

[2]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[3]  Masaru Tomita,et al.  Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis , 2012, Current bioinformatics.

[4]  Sean Ekins,et al.  Pathway mapping tools for analysis of high content data. , 2007, Methods in molecular biology.

[5]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[6]  J. Nielsen,et al.  Global metabolite analysis of yeast: evaluation of sample preparation methods , 2005, Yeast.

[7]  Joachim Selbig,et al.  PaVESy: Pathway Visualization and Editing System , 2004, Bioinform..

[8]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[9]  Inanç Birol,et al.  Hive plots - rational approach to visualizing networks , 2012, Briefings Bioinform..

[10]  Jianguo Xia,et al.  Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst , 2011, Nature Protocols.

[11]  D. Vuckovic Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry , 2012, Analytical and Bioanalytical Chemistry.

[12]  Cristina Mitrea,et al.  Methods and approaches in the topology-based analysis of biological pathways , 2013, Front. Physiol..

[13]  Falk Schreiber,et al.  VANTED: A system for advanced data analysis and visualization in the context of biological networks , 2006, BMC Bioinformatics.

[14]  Yufeng J. Tseng,et al.  3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data , 2013, BMC Systems Biology.

[15]  G. Siuzdak,et al.  Innovation: Metabolomics: the apogee of the omics trilogy , 2012, Nature Reviews Molecular Cell Biology.

[16]  Vladimir Shulaev,et al.  Metabolomics technology and bioinformatics , 2006, Briefings Bioinform..

[17]  Daniel Raftery,et al.  Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics , 2007, Analytical and bioanalytical chemistry.

[18]  Alexander Goesmann,et al.  Visualizing post genomics data-sets on customized pathway maps by ProMeTra – aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example , 2009, BMC Systems Biology.

[19]  Gary J Patti,et al.  Separation strategies for untargeted metabolomics. , 2011, Journal of separation science.

[20]  A. Krastanov,et al.  Metabolomics—The State of Art , 2010 .

[21]  Carole A. Goble,et al.  State of the nation in data integration for bioinformatics , 2008, J. Biomed. Informatics.

[22]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[23]  David S. Wishart,et al.  Current Progress in computational metabolomics , 2007, Briefings Bioinform..

[24]  David S. Wishart,et al.  MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data , 2010, Nucleic Acids Res..

[25]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[26]  Andreas Zell,et al.  Integrated enrichment analysis and pathway-centered visualization of metabolomics, proteomics, transcriptomics, and genomics data by using the InCroMAP software. , 2014, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[27]  Zhenjun Hu,et al.  VisANT: data-integrating visual framework for biological networks and modules , 2005, Nucleic Acids Res..

[28]  Alfonso Valencia,et al.  iHOP web services , 2007, Nucleic Acids Res..

[29]  David S. Wishart,et al.  MetaboAnalyst 3.0—making metabolomics more meaningful , 2015, Nucleic Acids Res..

[30]  David Gomez-Cabrero,et al.  Data integration in the era of omics: current and future challenges , 2014, BMC Systems Biology.

[31]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[32]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[33]  David S. Wishart,et al.  MetaboAnalyst: a web server for metabolomic data analysis and interpretation , 2009, Nucleic Acids Res..

[34]  Timothy M. D. Ebbels,et al.  Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA , 2011 .

[35]  Zoran Nikoloski,et al.  Integration of metabolomics data into metabolic networks , 2015, Front. Plant Sci..

[36]  R. Gerszten,et al.  Targeted Metabolomics , 2012, Current protocols in molecular biology.

[37]  David S. Wishart,et al.  MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis , 2012, Nucleic Acids Res..

[38]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[39]  Pedro Mendes,et al.  Bioinformatics Approaches to Integrate Metabolomics and Other Systems Biology Data , 2006 .

[40]  David I. Ellis,et al.  Metabolomics: Current analytical platforms and methodologies , 2005 .

[41]  Avi Ma ' ayan,et al.  Introduction to Network Analysis in Systems Biology , 2011 .

[42]  Antoine H. C. van Kampen,et al.  Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data , 2014, BMC Systems Biology.

[43]  William Stafford Noble,et al.  How does multiple testing correction work? , 2009, Nature Biotechnology.

[44]  Jos Kleinjans,et al.  Transcriptomic and metabolomic data integration , 2016, Briefings Bioinform..

[45]  Andreas Zell,et al.  Pathway-based visualization of cross-platform microarray datasets , 2012, Bioinform..

[46]  Karsten Suhre,et al.  MassTRIX: mass translator into pathways , 2008, Nucleic Acids Res..

[47]  Thomas Sauter,et al.  Towards improved genome-scale metabolic network reconstructions: unification, transcript specificity and beyond , 2015, Briefings Bioinform..

[48]  Michelle F Clasquin,et al.  LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. , 2012, Current protocols in bioinformatics.

[49]  Xi-jun Wang,et al.  Modern analytical techniques in metabolomics analysis. , 2012, The Analyst.

[50]  John C. Lindon,et al.  Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results , 2006, Briefings Bioinform..

[51]  Avi Ma’ayan Introduction to Network Analysis in Systems Biology , 2011, Science Signaling.

[52]  R. Abagyan,et al.  METLIN: A Metabolite Mass Spectral Database , 2005, Therapeutic drug monitoring.

[53]  Joaquín Dopazo,et al.  Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data , 2010, Bioinform..

[54]  David S. Wishart,et al.  Bioinformatics Applications Note Systems Biology Metpa: a Web-based Metabolomics Tool for Pathway Analysis and Visualization , 2022 .