Optimal Cuts for Powers of the Petersen Graph
暂无分享,去创建一个
[1] L. H. Harper. Optimal Assignments of Numbers to Vertices , 1964 .
[2] L. H. Harper. A necessary condition on minimal cube numberings , 1967 .
[3] L. H. Harper,et al. The congestion of n-cube layout on a rectangular grid , 2000, Discret. Math..
[4] José D. P. Rolim,et al. Optimal Cutwidths and Bisection Widths of 2- and 3-Dimensional Meshes , 1995, WG.
[5] Béla Bollobás,et al. Edge-isoperimetric inequalities in the grid , 1991, Comb..
[6] Rudolf Ahlswede,et al. General Edge-isoperimetric Inequalities, Part II: a Local-Global Principle for Lexicographical Solutions , 1997, Eur. J. Comb..
[7] Béla Bollobás,et al. An Isoperimetric Inequality on the Discrete Torus , 1990, SIAM J. Discret. Math..
[8] Sergei L. Bezrukov. On an equivalence in discrete extremal problems , 1999, Discret. Math..
[9] Sajal K. Das,et al. The Folded Petersen Network: A New Versatile Multiprocessor Interconnection Topology , 1993, WG.
[10] Rudolf Ahlswede,et al. Edge isoperimetric theorems for integer point arrays , 1995 .
[11] Sajal K. Das,et al. Folded Petersen cube networks: new competitors for the hypercubes , 1993, Proceedings of 1993 5th IEEE Symposium on Parallel and Distributed Processing.
[12] Sabine R. Öhring,et al. Efficient Communication in Folded Petersen Networks , 1997, Int. J. Found. Comput. Sci..
[13] John H. Lindsey,et al. Assignment of Numbers to Vertices , 1964 .