The influence of selected ω-mercaptocarboxylate ligands on physicochemical properties and biological activity of Cd-free, zinc‑copper‑indium sulfide colloidal nanocrystals.

[1]  H. D. Duong,et al.  Effects of CdSe and CdSe/ZnS Core/Shell Quantum Dots on Singlet Oxygen Production and Cell Toxicity. , 2018, Journal of Nanoscience and Nanotechnology.

[2]  D. Zahn,et al.  Origin and Dynamics of Highly Efficient Broadband Photoluminescence of Aqueous Glutathione-Capped Size-Selected Ag–In–S Quantum Dots , 2018 .

[3]  A. Mansur,et al.  Bioengineered II-VI semiconductor quantum dot-carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  M. Free,et al.  Quantum dots and carbon dots based fluorescent sensors for TB biomarkers detection , 2017 .

[5]  Wu Yang,et al.  Tunable emission of Cu (Mn)-doped ZnInS quantum dots via dopant interaction. , 2017, Journal of colloid and interface science.

[6]  G. Zeng,et al.  Bioaccumulation and toxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium. , 2017, Colloids and surfaces. B, Biointerfaces.

[7]  R. Mailloux,et al.  Progress in understanding the molecular oxygen paradox – function of mitochondrial reactive oxygen species in cell signaling , 2017, Biological chemistry.

[8]  D. Djurado,et al.  Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized with Dodecanethiol. , 2017, Journal of the American Chemical Society.

[9]  M. Tavakoli,et al.  Biochemical mechanisms of dose-dependent cytotoxicity and ROS-mediated apoptosis induced by lead sulfide/graphene oxide quantum dots for potential bioimaging applications , 2017, Scientific Reports.

[10]  Cuiling Zhang,et al.  Rare earth ions enhanced near infrared fluorescence of Ag2S quantum dots for the detection of fluoride ions in living cells. , 2017, Nanoscale.

[11]  Mengmeng Wang,et al.  Dose and time effect of CdTe quantum dots on antioxidant capacities of the liver and kidneys in mice , 2017, International journal of nanomedicine.

[12]  Guojun Chen,et al.  Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy. , 2017, ACS applied materials & interfaces.

[13]  Yongbo Wang,et al.  Aqueous-synthesis of CuInS2 core and CuInS2/ZnS core/shell quantum dots and their optical properties , 2017 .

[14]  M. P. Yeste,et al.  Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. , 2017, Environmental pollution.

[15]  H. Cao,et al.  Effects of quantum dots on the ROS amount of liver cancer stem cells. , 2017, Colloids and surfaces. B, Biointerfaces.

[16]  T. Deng,et al.  Organic-to-aqueous phase transfer of Zn–Cu–In–Se/ZnS quantum dots with multifunctional multidentate polymer ligands for biomedical optical imaging , 2017 .

[17]  H. Gerritsen,et al.  Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots , 2017, Chemistry of materials : a publication of the American Chemical Society.

[18]  D. Cramb,et al.  Quantum dot interactions and flow effects in angiogenic zebrafish (Danio rerio) vessels and human endothelial cells. , 2017, Nanomedicine : nanotechnology, biology, and medicine.

[19]  Yuanyuan Su,et al.  Subcellular distribution and cellular self-repair ability of fluorescent quantum dots emitting in the visible to near-infrared region , 2017, Nanotechnology.

[20]  S. Iannotta,et al.  Data on HepG2 cells changes following exposure to cadmium sulphide quantum dots (CdS QDs) , 2016, Data in brief.

[21]  Z. Brzózka,et al.  Studies on influence of polymer modifiers for fluorescent nanocrystals' cytotoxicity. , 2016, Journal of pharmaceutical and biomedical analysis.

[22]  Yan Sun,et al.  Molecular characterization and expression profiles of GATA6 in tongue sole (Cynoglossus semilaevis). , 2016, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[23]  A. Schenning,et al.  Ligand exchange as a tool to improve quantum dot miscibility in polymer composite layers used as luminescent down-shifting layers for photovoltaic applications , 2016 .

[24]  M. Meyer,et al.  The cytotoxicity studies of water-soluble InP/ZnSe quantum dots , 2016, Journal of Nanoparticle Research.

[25]  S. Jurga,et al.  Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. , 2016, Acta biomaterialia.

[26]  Z. Brzózka,et al.  Evaluation of biological activity of quantum dots in a microsystem , 2016, Electrophoresis.

[27]  Li-wei Liu,et al.  Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models. , 2015, Materials science & engineering. C, Materials for biological applications.

[28]  Gang Xu,et al.  A high efficient photoluminescence Zn–Cu–In–S/ZnS quantum dots with long lifetime , 2015 .

[29]  Haizheng Zhong,et al.  Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications. , 2015, ACS applied materials & interfaces.

[30]  K. Jamil,et al.  Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles , 2015 .

[31]  K. Yong,et al.  In vivo toxicity assessment of non-cadmium quantum dots in BALB/c mice. , 2015, Nanomedicine : nanotechnology, biology, and medicine.

[32]  M. Hsiao,et al.  Evaluations of the Chemical Stability and Cytotoxicity of CuInS2 and CuInS2/ZnS Core/Shell Quantum Dots , 2015 .

[33]  Wolfgang Tremel,et al.  Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization , 2015, Beilstein journal of nanotechnology.

[34]  Xiaoyuan Chen,et al.  Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging , 2014, Nano Research.

[35]  T. Aubert,et al.  Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging. , 2014, Chemical research in toxicology.

[36]  J. Montenegro,et al.  The effect of nanoparticle degradation on amphiphilic polymer-coated quantum dot toxicity: the importance of particle functionality assessment in toxicology [corrected]. , 2014, Acta biomaterialia.

[37]  J. Kolny-Olesiak,et al.  Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. , 2013, ACS applied materials & interfaces.

[38]  Bingbo Zhang,et al.  One-pot synthesis of hydrophilic ZnCuInS/ZnS quantum dots for in vivo imaging , 2013 .

[39]  Z. Jakubek,et al.  Low-temperature approach to highly emissive copper indium sulfide colloidal nanocrystals and their bioimaging applications. , 2013, ACS applied materials & interfaces.

[40]  Yuangang Zheng,et al.  Aqueous synthesis of highly luminescent AgInS₂-ZnS quantum dots and their biological applications. , 2013, Nanoscale.

[41]  K. Honeychurch Recent Developments in the Stripping Voltammetric Determination of Indium , 2013 .

[42]  Weisheng Guo,et al.  Synthesis of Zn-Cu-In-S/ZnS Core/Shell Quantum Dots with Inhibited Blue-Shift Photoluminescence and Applications for Tumor Targeted Bioimaging , 2013, Theranostics.

[43]  Hicham A. Chibli,et al.  InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. , 2013, Nanoscale.

[44]  L. Ouyang,et al.  Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis , 2012, Cell proliferation.

[45]  J. Irudayaraj,et al.  Hydrodynamic size-dependent cellular uptake of aqueous QDs probed by fluorescence correlation spectroscopy. , 2012, The journal of physical chemistry. B.

[46]  P. Reiss,et al.  Aqueous phase transfer of InP/ZnS nanocrystals conserving fluorescence and high colloidal stability. , 2011, ACS nano.

[47]  Hicham A. Chibli,et al.  Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. , 2011, Nanoscale.

[48]  C. Burda,et al.  Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States , 2011 .

[49]  Y. Hamanaka,et al.  Photoluminescence Properties and Its Origin of AgInS2 Quantum Dots with Chalcopyrite Structure , 2011 .

[50]  T. Pons,et al.  Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging , 2010 .

[51]  J. Oh Surface modification of colloidal CdX-based quantum dots for biomedical applications , 2010 .

[52]  Benoit Dubertret,et al.  Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. , 2010, ACS nano.

[53]  Liang Li,et al.  Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging , 2009 .

[54]  Hong Ding,et al.  Imaging pancreatic cancer using bioconjugated InP quantum dots. , 2009, ACS nano.

[55]  Kai Chen,et al.  InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible , 2008, Nano research.

[56]  Bernhardt L Trout,et al.  Modified ligand-exchange for efficient solubilization of CdSe/ZnS quantum dots in water: a procedure guided by computational studies. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[57]  R Richards-Kortum,et al.  Photostability of quantum dots with amphiphilic polymer-based passivation strategies , 2008, Nanotechnology.

[58]  G. Nienhaus,et al.  Quenching of CdSe-ZnS Core-Shell Quantum Dot Luminescence by Water-Soluble Thiolated Ligands , 2007 .

[59]  Rebekah Drezek,et al.  Evaluation of quantum dot cytotoxicity based on intracellular uptake. , 2006, Small.

[60]  Rebekah Drezek,et al.  Water-soluble quantum dots for biomedical applications. , 2006, Biochemical and biophysical research communications.

[61]  Igor L. Medintz,et al.  Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. , 2006, The journal of physical chemistry. B.

[62]  J. Gooding,et al.  Surface pKa of Self-Assembled Monolayers , 2005 .

[63]  Jay L Nadeau,et al.  Photophysical properties of biologically compatible CdSe quantum dot structures. , 2005, The journal of physical chemistry. B.

[64]  Hassan S. Bazzi,et al.  Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots , 2005, Journal of Molecular Medicine.

[65]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[66]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[67]  B. Halliwell,et al.  Free radicals in biology and medicine , 1985 .

[68]  Panpan Wang,et al.  A cathodic “signal-on” photoelectrochemical sensor for Hg2+ detection based on ion-exchange with ZnS quantum dots , 2018 .

[69]  G. O'Connor,et al.  The effect of "Jelly" CdTe QD uptake on RAW264.7 monocytes: immune responses and cell fate study. , 2016, Toxicology research.