Polariton‐Induced Enhanced Emission from an Organic Dye under the Strong Coupling Regime

Exciton–polaritons in semiconductors are quasi‐particles which have recently shown the capability to undergo phase transition into a coherent hybrid state of light and matter. The observation of such quasi‐particles in organic microcavities has attracted increasing attention for their characteristic of reaching condensation at room temperature. In this work, the emission properties of organic polaritons are demonstrated not to depend on the overlap between the absorption and emission states of the molecule and that the emission dynamics are modified in the strong coupling regime, showing a significant enhancement of the photoluminescence intensity as compared to the bare dye. This paves the way to the investigation of molecules with large absorption coefficients but poor emission efficiencies for the realization of polariton condensates and organic electrically injected lasers by exploiting strong exciton‐photon coupling regimes.

[1]  S. A. Maier,et al.  Nonlinear interactions in an organic polariton condensate , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[2]  Ullrich Scherf,et al.  Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. , 2014, Nature materials.

[3]  David G Lidzey,et al.  Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities , 2013 .

[4]  G. Rocca,et al.  Microscopic theory of polariton lasing via vibronically assisted scattering , 2013, 1306.2222.

[5]  L. Andreani,et al.  Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation , 2013 .

[6]  T. Ebbesen,et al.  Polariton dynamics under strong light-molecule coupling. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[8]  Y. Wei,et al.  Strong exciton-photon coupling in microcavities containing new fluorophenethylamine based perovskite compounds. , 2012, Optics express.

[9]  Mikhail D Lukin,et al.  Tailoring light-matter interaction with a nanoscale plasmon resonator. , 2012, Physical review letters.

[10]  J. Leymarie,et al.  LO-phonon-assisted polariton lasing in a ZnO-based microcavity , 2011, 1112.0043.

[11]  David G Lidzey,et al.  Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity , 2011 .

[12]  E. Terpetschnig,et al.  Long-wavelength fluorescence lifetime labels , 2011 .

[13]  Pavlos G. Lagoudakis,et al.  Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities , 2011 .

[14]  Giulio Cerullo,et al.  Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity , 2011 .

[15]  T. Ebbesen,et al.  Reversible switching of ultrastrong light-molecule coupling. , 2011 .

[16]  Vladimir Bulovic,et al.  Intracavity optical pumping of J-aggregate microcavity exciton polaritons , 2010 .

[17]  J. Carlin,et al.  Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory , 2010 .

[18]  G. Rocca,et al.  Organic-based microcavities with vibronic progressions: Photoluminescence , 2009 .

[19]  G. Rocca,et al.  Exciton-phonon scattering and photoexcitation dynamics in J-aggregate microcavities , 2008, 0812.5077.

[20]  Giuseppe C. La Rocca,et al.  Simulation of J-aggregate microcavity photoluminescence , 2008 .

[21]  S. Forrest,et al.  Green polariton photoluminescence using the red-emitting phosphor PtOEP , 2007 .

[22]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[23]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.

[24]  Peter Reineker,et al.  Fast polariton relaxation in strongly coupled organic microcavities , 2004 .

[25]  David G Lidzey,et al.  Time-resolved and cw photoluminescence from strongly coupled organic microcavities , 2004 .

[26]  Toshihide Kamata,et al.  Polariton emission from polysilane-based organic microcavities , 2003 .

[27]  David G. Lidzey,et al.  Cavity polaritons in microcavities containing disordered organic semiconductors , 2003 .

[28]  P. Schouwink,et al.  Nonequilibrium polariton dynamics in organic microcavities , 2002 .

[29]  M. S. Skolnick,et al.  Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation , 2002 .

[30]  W. Barnes,et al.  Förster energy transfer in an optical microcavity. , 2000, Science.

[31]  Jeremy J. Baumberg,et al.  Relaxation bottleneck and its suppression in semiconductor microcavities , 2000 .

[32]  M. S. Skolnick,et al.  Photon-mediated hybridization of frenkel excitons in organic semiconductor microcavities , 2000, Science.

[33]  R. Mahrt,et al.  ENHANCED DIPOLE-DIPOLE INTERACTION IN A POLYMER MICROCAVITY , 1999 .

[34]  Donal D. C. Bradley,et al.  Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities , 1999 .

[35]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[36]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[37]  Franco Cacialli,et al.  Ultrafast study of spontaneous emission from conjugated polymer microcavities , 1997 .

[38]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[39]  Julia M. Phillips,et al.  Physics and applications of organic microcavity light emitting diodes , 1996 .

[40]  Ananth Dodabalapur,et al.  Efficiency enhancement of microcavity organic light emitting diodes , 1996 .

[41]  R. Friend,et al.  Emission enhancement in single-layer conjugated polymer microcavities , 1996 .

[42]  E. Schubert,et al.  Highly Efficient Light-Emitting Diodes with Microcavities , 1994, Science.

[43]  Loudon,et al.  Spontaneous emission in the optical microscopic cavity. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[44]  P. Mataloni,et al.  Anomalous spontaneous emission time in a microscopic optical cavity. , 1987, Physical review letters.

[45]  Wolfgang Kowalsky,et al.  Organic Electro‐ and Photoluminescent Microcavity Devices , 1998 .