Exploiting Social Judgements in Big Data Analytics

Social judgements like comments, reviews, discussions, or ratings have become a ubiquitous component of most Web applications, especially in the e-commerce domain. Now, a central challenge is using these judgements to im- prove the user experience by offering new query paradigms or better data analyt- ics. Recommender systems have already demonstrated how ratings can be effec- tively used towards that end, allowing users to semantically explore even large item databases. In this paper, we will discuss how to use unstructured reviews to build a structured semantic representation of database items, enabling the imple- mentation of semantic queries and further machine-learning analytics. Thus, we address one of the central challenge of Big Data: making sense of huge collec- tions of unstructured user feedback.

[1]  S. Dumais Latent Semantic Analysis. , 2005 .

[2]  John Riedl,et al.  The quest for quality tags , 2007, GROUP.

[3]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[4]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[5]  Christoph Lofi,et al.  Exploiting Perceptual Similarity: Privacy-Preserving Cooperative Query Personalization , 2014, WISE.

[6]  Bradley N. Miller,et al.  MovieLens unplugged: experiences with an occasionally connected recommender system , 2003, IUI '03.

[7]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[8]  Omer Levy,et al.  Neural Word Embedding as Implicit Matrix Factorization , 2014, NIPS.

[9]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[10]  Yehuda Koren,et al.  Advances in Collaborative Filtering , 2011, Recommender Systems Handbook.

[11]  Anton van den Hengel,et al.  Image-Based Recommendations on Styles and Substitutes , 2015, SIGIR.

[12]  Yehuda Koren,et al.  All Together Now: A Perspective on the Netflix Prize , 2010 .

[13]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[14]  Svante Wold,et al.  Pattern recognition by means of disjoint principal components models , 1976, Pattern Recognit..

[15]  Yoshua Bengio,et al.  Not All Neural Embeddings are Born Equal , 2014, ArXiv.

[16]  A. Tversky,et al.  The Psychology of Preferences , 1982 .

[17]  Wilson C. Hsieh,et al.  Bigtable: A Distributed Storage System for Structured Data , 2006, TOCS.

[18]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[19]  Kiran Bhowmick,et al.  A Survey of Opinion Mining and Sentiment Analysis , 2015 .

[20]  Geoffrey E. Hinton,et al.  A Scalable Hierarchical Distributed Language Model , 2008, NIPS.

[21]  Richard T. Watson,et al.  Unveiling user-generated content: Designing websites to best present customer reviews , 2011 .

[22]  Wolf-Tilo Balke,et al.  Pushing the Boundaries of Crowd-enabled Databases with Query-driven Schema Expansion , 2012, Proc. VLDB Endow..

[23]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[24]  Lei Zhang,et al.  A Survey of Opinion Mining and Sentiment Analysis , 2012, Mining Text Data.

[25]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[26]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[27]  Bart P. Knijnenburg,et al.  Explaining the user experience of recommender systems , 2012, User Modeling and User-Adapted Interaction.

[28]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.