Coarse-grained numerical bifurcation analysis of lattice Boltzmann models

Abstract In this paper we study the coarse-grained bifurcation analysis approach proposed by I.G. Kevrekidis and collaborators in PNAS [C. Theodoropoulos, Y.H. Qian, I.G. Kevrekidis, “Coarse” stability and bifurcation analysis using time-steppers: a reaction-diffusion example, Proc. Natl. Acad. Sci. 97 (18) (2000) 9840–9843]. We extend the results obtained in that paper for a one-dimensional FitzHugh–Nagumo lattice Boltzmann (LB) model in several ways. First, we extend the coarse-grained time stepper concept to enable the computation of periodic solutions and we use the more versatile Newton–Picard method rather than the Recursive Projection Method (RPM) for the numerical bifurcation analysis. Second, we compare the obtained bifurcation diagram with the bifurcation diagrams of the corresponding macroscopic PDE and of the lattice Boltzmann model. Most importantly, we perform an extensive study of the influence of the lifting or reconstruction step on the minimal successful time step of the coarse-grained time stepper and the accuracy of the results. It is shown experimentally that this time step must often be much larger than the time it takes for the higher-order moments to become slaved by the lowest-order moment, which somewhat contradicts earlier claims.

[1]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[3]  L. Luo,et al.  Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model , 1997 .

[4]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[5]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[6]  Dirk Roose,et al.  An Adaptive Newton-Picard Algorithm with Subspace Iteration for Computing Periodic Solutions , 1998, SIAM J. Sci. Comput..

[7]  C. W. Gear,et al.  'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .

[8]  Ioannis G. Kevrekidis,et al.  “Coarse” stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples , 2001, nlin/0111038.

[9]  H. Keller Numerical Methods for Two-Point Boundary-Value Problems , 1993 .

[10]  Dirk Roose,et al.  Computation and Bifurcation Analysis of Periodic Solutions of Large-Scale Systems , 2000 .

[11]  R. Sman,et al.  Convection-Diffusion Lattice Boltzmann Scheme for Irregular Lattices , 2000 .

[12]  Bastien Chopard,et al.  Cellular Automata and Lattice Boltzmann Techniques: an Approach to Model and Simulate Complex Systems , 2002, Adv. Complex Syst..

[13]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[14]  Ioannis G. Kevrekidis,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..

[15]  Ioannis G. Kevrekidis,et al.  Coarse bifurcation analysis of kinetic Monte Carlo simulations: A lattice-gas model with lateral interactions , 2002 .

[16]  P. Adler,et al.  Boundary flow condition analysis for the three-dimensional lattice Boltzmann model , 1994 .

[17]  Pieter Van Leemput,et al.  Numerical Bifurcation Analysis of Lattice Boltzmann Models: A Reaction-Diffusion Example , 2004, International Conference on Computational Science.

[18]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2001 .

[20]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[21]  Steven A. Orszag,et al.  Scalings in diffusion-driven reactionA+B→C: Numerical simulations by lattice BGK models , 1995 .

[22]  Giovanni Samaey,et al.  The Gap-Tooth Scheme for Homogenization Problems , 2005, Multiscale Model. Simul..

[23]  Gautam M. Shroff,et al.  Stabilization of unstable procedures: the recursive projection method , 1993 .

[24]  Dab,et al.  Lattice-gas automata for coupled reaction-diffusion equations. , 1991, Physical review letters.

[25]  Søren Asmussen,et al.  Pricing of Some Exotic Options with NIG-Lévy Input , 2004 .

[26]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[27]  Ioannis G. Kevrekidis,et al.  Constraint-Defined Manifolds: a Legacy Code Approach to Low-Dimensional Computation , 2005, J. Sci. Comput..

[28]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[29]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[30]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[31]  Ioannis G. Kevrekidis,et al.  Constraint-defined manifolds: A legacy code approach to low-dimensional computation , 2005 .