The deeply obscured AGN of NGC4945 I. Spitzer-IRS maps of [Ne V], [Ne II], H2 0-0 S(1), S(2), and other tracers

The nearly edge-on galaxy NGC4945 is one of the closest galaxies where an AGN and starburst coexist, and is one of the brightest sources at 100 keV. Near and mid-infrared spectroscopy have shown very strong obscuration of its central region, rivaled only in strength by some of the most deeply obscured ULIRGs. We aim to determine the spatial distribution of ISM features in the central 426x426 pc^2 of NGC4945. We map the central region of NGC4945 in three Spitzer-IRS modules (SH, SL and LL). We produce maps of the flux distribution of the starburst tracers [Ne II], [Ne III], [S III] and [S IV] at 12.81, 15.56, 18.71 and 10.51 mum, respectively, and a map of the AGN narrow-line region tracer [Ne V] at 14.32 mum. We also mapped the S(1), S(2) and S(3) pure rotational lines of H2, which trace the distribution of warm molecular hydrogen. We obtained an extinction map (A_V) based on the apparent strength of the 9.7 mum silicate absorption feature. Our A_V map traces the contours of the starburst ring but the highest extinction (A_V(9.85 mum)~60) is found at the nucleus. Within the uncertainty of the astrometry all emission lines are found to peak on the nucleus, except for the warm molecular hydrogen emission which shows a maximum 60-100 pc NW of the nucleus. We favour a scenario in which the lower H2 0-0 S(1) and S(2) rotational lines originate mainly from an unobscured extra-nuclear component associated with the super-wind cone observed in the HST NICMOS map of the H2 1-0 S(1) vibrational line. For the [Ne V] emission we infer an attenuation of a factor 12-160 (A_V=55-112) based on a comparison of the ratio of our [Ne V] flux and the absorption-corrected 14-195 keV Swift-BAT flux to the average [Ne V]/BAT ratio for Seyfert 1 nuclei. The high attenuation indicates that [Ne V] and [O IV] cannot be used as extinction-free tracers of AGN power in galaxies with deeply buried nuclei.

[1]  D. Whittet,et al.  Dust in the Galactic Environment , 2018 .

[2]  S. Veilleux,et al.  SPITZER QUASAR AND ULIRG EVOLUTION STUDY (QUEST). IV. COMPARISON OF 1 Jy ULTRALUMINOUS INFRARED GALAXIES WITH PALOMAR-GREEN QUASARS , 2009, 0905.1577.

[3]  A. Goulding,et al.  Towards a complete census of AGN in nearby Galaxies: a large population of optically unidentified AGN , 2009, 0906.0772.

[4]  L. Armus,et al.  MID-INFRARED PROPERTIES OF THE SWIFT BURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE. I. EMISSION-LINE DIAGNOSTICS , 2010, 1004.5321.

[5]  P. Roche,et al.  An investigation of the interstellar extinction. I: Towards dusty WC Wolf-Rayet stars , 1984 .

[6]  R. Griffiths,et al.  Suzaku Wide-Band X-Ray Spectroscopy of the Seyfert 2 AGN in NGC 4945 , 2007, 0708.1201.

[7]  L. Rmus,et al.  MID-IR GALAXY CLASSIFICATION BASED ON SILICATE OBSCURATION AND PAH EQUIVALENT WIDTH , 2006 .

[8]  R. Fesen,et al.  Reddening Measurements and Physical Conditions for Cassiopeia A from Optical and Near-Infrared Spectra , 1996 .

[9]  S. Sakai,et al.  The Hubble Flow around the Centaurus A/M83 Galaxy Complex , 2006, astro-ph/0603091.

[10]  Chris Done,et al.  NGC 4945: The Brightest Seyfert 2 Galaxy at 100 keV , 1996 .

[11]  G. Rieke,et al.  LOCAL LUMINOUS INFRARED GALAXIES. I. SPATIALLY RESOLVED OBSERVATIONS WITH THE SPITZER INFRARED SPECTROGRAPH , 2010, 1004.1364.

[12]  M. Jura Chlorine-bearing molecules in interstellar clouds , 1974 .

[13]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[14]  D. York,et al.  Abundances and Physical Conditions in the Interstellar Gas toward HD 192639 , 2002, astro-ph/0205403.

[15]  MID-INFRARED GALAXY CLASSIFICATION BASED ON SILICATE OBSCURATION AND PAH EQUIVALENT WIDTH , 2006, astro-ph/0611918.

[16]  G. Savini,et al.  Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231 , 2010, 1005.2877.

[17]  J. Bernard-Salas,et al.  The Mid-Infrared Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy , 2006 .

[18]  P. P. van der Werf,et al.  Mid-Infrared Diagnostics of Starburst Galaxies: Clumpy, Dense Structures in Star-Forming Regions in the Antennae (NGC 4038/4039) , 2007, 0707.1397.

[19]  G. Neugebauer,et al.  A catalog of IRAS observations of large optical galaxies , 1988 .

[20]  M. Joy,et al.  Far-Infrared Observations of a Luminous Dust-shrouded Source in the Nucleus of NGC 4945 , 1988 .

[21]  G. Rieke,et al.  THE EXTREME STAR FORMATION ACTIVITY OF Arp 299 REVEALED BY SPITZER IRS SPECTRAL MAPPING , 2009, 0903.1495.

[22]  J. Rho,et al.  SPITZER SPECTRAL MAPPING OF SUPERNOVA REMNANT CASSIOPEIA A , 2008, 0810.3014.

[23]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[24]  C. Lonsdale,et al.  4.6 Micron absorption features due to solid phase CO and Cyano group molecules toward compact infrared sources , 1984 .

[25]  G. M. Voit,et al.  Infrared fine-structure line diagnostics of shrouded active galactic nuclei , 1992 .

[26]  P. Cox,et al.  A New Probe of Dense Gas at High Redshift: Detection of HCO+ (5-4) Line Emission in APM 08279+5255 , 2006, astro-ph/0605656.

[27]  D. Kunze,et al.  Massive Star Formation and Evolution in Starburst Galaxies: Mid-infrared Spectroscopy with the ISO Short Wavelength Spectrometer* , 2000 .

[28]  THE MID-INFRARED FINE-STRUCTURE LINES OF NEON AS AN INDICATOR OF STAR FORMATION RATE IN GALAXIES , 2006, astro-ph/0611856.

[29]  James C. Green,et al.  Optical Structure and Proper-Motion Age of the Oxygen-rich Supernova Remnant 1E 0102-7219 in the Small Magellanic Cloud , 2006, astro-ph/0601543.

[30]  The Opaque Nascent Starburst in NGC 1377: Spitzer SINGS Observations , 2006, astro-ph/0604267.

[31]  J. Bernard-Salas,et al.  A SPITZER HIGH-RESOLUTION MID-INFRARED SPECTRAL ATLAS OF STARBURST GALAXIES , 2009, 0908.2812.

[32]  A. Tielens,et al.  Pixie Dust: The Silicate Features in the Diffuse Interstellar Medium , 2005, astro-ph/0510156.

[33]  B. Brandl,et al.  High-Resolution Mid-Infrared Spectroscopy of Ultraluminous Infrared Galaxies , 2007, 0706.0513.

[34]  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE EXPANSION ASYMMETRY AND AGE OF THE CASSIOPEIA A SUPERNOVA REMNANT 1 , 2006 .

[35]  D. York,et al.  Observations of interstellar chlorine and phosphorus , 1978 .

[36]  M. Elitzur,et al.  INFRARED DIAGNOSTICS FOR THE EXTENDED 12 μm SAMPLE OF SEYFERTS , 2009, 0912.3545.

[37]  R. Maiolino,et al.  Infrared spectroscopy around 4 mu m of Seyfert 2 galaxies: Obscured broad line regions and coronal lines , 2002, astro-ph/0209475.

[38]  S. Aalto,et al.  HNC, HCN and CN in Seyfert galaxies , 2007, 0710.4400.

[39]  A Relation between the Mid-Infrared [Ne V] 14.3 μm and [Ne III] 15.6 μm Lines in Active Galactic Nuclei , 2007 .

[40]  Hideyo Kunieda,et al.  X-Ray Evidence for Seyfert Activity Buried in the Infrared Galaxy NGC 4945 , 1993 .

[41]  Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope , 2006, astro-ph/0610218.

[42]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[43]  T. Sakamoto,et al.  THE 22 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY , 2009, 0903.3037.

[44]  M. Spaans,et al.  Overluminous HNC line emission in Arp 220, NGC 4418 and Mrk 231. Global IR pumping or XDRs? , 2006, astro-ph/0612122.

[45]  K. Meisenheimer,et al.  Unveiling the Central Parsec Region of an Active Galactic Nucleus: The Circinus Nucleus in the Near-Infrared with the Very Large Telescope , 2004 .

[46]  Leiden Observatory,et al.  CHAMP+ observations of warm gas in M 17 SW , 2009, 0910.4937.

[47]  H. Roussel,et al.  Spectral Mapping Reconstruction of Extended Sources , 2007, 0708.3745.

[48]  A. Moorwood,et al.  Extended Infrared Line Emission Excited by Starburst and Seyfert Activity in NGC 3256 and NGC 4945 , 1994 .

[49]  Turek,et al.  Structure of the Circumnuclear Region of Seyfert 2 Galaxies Revealed by Rossi X-Ray Timing Explorer Hard X-Ray Observations of NGC 4945 , 2000, The Astrophysical journal.

[50]  J. Moran,et al.  The Distribution of H2O Maser Emission in the Nucleus of NGC 4945 , 1997, astro-ph/9702220.

[51]  E. Oliva,et al.  Mid-Infrared line diagnostics of active galaxies - A spectroscopic AGN survey with ISO-SWS , 2002, astro-ph/0207381.

[52]  J. Darling,et al.  SPITZER MID-INFRARED SPECTROSCOPY OF COMPACT SYMMETRIC OBJECTS: WHAT POWERS RADIO-LOUD ACTIVE GALACTIC NUCLEI? , 2010, 1004.0952.

[53]  M. Dopita,et al.  Radiative shock-wave theory. II - High-velocity shocks and thermal instabilities , 1985 .

[54]  A Spitzer Space Telescope Infrared Spectrograph Survey of Warm Molecular Hydrogen in Ultraluminous Infrared Galaxies , 2006, astro-ph/0605359.

[55]  Detection of HNC and tentative detection of CN at z = 3.9 , 2006, astro-ph/0612345.

[56]  R. Genzel,et al.  00 03 33 4 v 1 2 2 M ar 2 00 0 Massive star formation and evolution in starburst galaxies : mid-infrared spectroscopy with ISO-SWS 1 , 2000 .

[57]  Az,et al.  Warm Molecular Hydrogen in the Spitzer SINGS Galaxy Sample , 2007, 0707.0395.

[58]  A. Tielens,et al.  Detection of strongly processed ice in the central starburst of NGC 4945 , 2003, astro-ph/0302568.

[59]  E. Bergin,et al.  Spitzer Observations of HH 54 and HH 7-11: Mapping the H2 Ortho-to-Para Ratio in Shocked Molecular Gas , 2006, astro-ph/0606232.

[60]  E. OLlVA A Prominent Ionization Cone and Starburst Ring in the Nearby Circinus Galaxy , 2009 .

[61]  Paule Sonnentrucker,et al.  Abundances and Physical Conditions in the Interstellar Gas toward HD 185418 , 2003 .

[62]  A. Fuente,et al.  Probing X-ray irradiation in the nucleus of NGC 1068 with observations of high-J lines of dense gas tracers , 2009, 0906.5154.