Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers

A new method, embedded-3D printing (e-3DP), is reported for fabricating strain sensors within highly conformal and extensible elastomeric matrices. e-3DP allows soft sensors to be created in nearly arbitrary planar and 3D motifs in a highly programmable and seamless manner. Several embodiments are demonstrated and sensor performance is characterized.

[1]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[2]  Mary C. Boyce,et al.  Constitutive modeling of the large strain time-dependent behavior of elastomers , 1998 .

[3]  Cédric Cochrane,et al.  Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite , 2007, Sensors (Basel, Switzerland).

[4]  P. Sheng,et al.  Characterizing and Patterning of PDMS‐Based Conducting Composites , 2007 .

[5]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[6]  G. Tröster,et al.  Sensor for Measuring Strain in Textile , 2008, Sensors.

[7]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[8]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[9]  T. Someya,et al.  Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.

[10]  D. Cotton,et al.  A Multifunctional Capacitive Sensor for Stretchable Electronic Skins , 2009, IEEE Sensors Journal.

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  S. Michel,et al.  A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators , 2009 .

[13]  P. Dubois,et al.  Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers , 2009 .

[14]  I. Graz,et al.  Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes , 2009 .

[15]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[16]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[17]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[18]  H. Choi,et al.  Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. , 2010, Nature nanotechnology.

[19]  Rebecca K. Kramer,et al.  Hyperelastic pressure sensing with a liquid-embedded elastomer , 2010 .

[20]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[21]  Peng Wang,et al.  Creep of electrical resistance under uniaxial pressures for carbon black–silicone rubber composite , 2010 .

[22]  R. Wood,et al.  A non-differential elastomer curvature sensor for softer-than-skin electronics , 2011 .

[23]  J. Lewis,et al.  Omnidirectional Printing of 3D Microvascular Networks , 2011, Advanced materials.

[24]  M. Klüppel,et al.  Mechanical and electrical analysis of carbon black networking in elastomers under strain , 2011 .

[25]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[26]  Stéphanie P Lacour,et al.  Microstructured silicone substrate for printable and stretchable metallic films. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[27]  T. Ding,et al.  Resistive viscoelasticity of silicone rubber/carbon black composite , 2011 .

[28]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[29]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[30]  Dae-Hyeong Kim,et al.  Flexible and stretchable electronics for biointegrated devices. , 2012, Annual review of biomedical engineering.

[31]  Yong Zhu,et al.  Highly Conductive and Stretchable Silver Nanowire Conductors , 2012, Advanced materials.

[32]  John A. Rogers,et al.  Highly Sensitive Skin‐Mountable Strain Gauges Based Entirely on Elastomers , 2012 .

[33]  Yong-Lae Park,et al.  Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors , 2012, IEEE Sensors Journal.

[34]  Megan L. McCain,et al.  A tissue-engineered jellyfish with biomimetic propulsion , 2012, Nature Biotechnology.

[35]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[36]  Robert J. Wood,et al.  Influence of cross-sectional geometry on the sensitivity and hysteresis of liquid-phase electronic pressure sensors , 2012 .

[37]  Kinam Kim,et al.  Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. , 2012, Nature nanotechnology.

[38]  Sung-hoon Ahn,et al.  A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. , 2012, Nature materials.

[39]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[40]  J. Muth,et al.  3D Printing of Free Standing Liquid Metal Microstructures , 2013, Advanced materials.

[41]  Qibing Pei,et al.  Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane , 2013 .

[42]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[43]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[44]  Lucia Beccai,et al.  Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing , 2013, Sensors.

[45]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[46]  Daniel M. Vogt,et al.  Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic Channels , 2013, IEEE Sensors Journal.

[47]  E. Meng,et al.  High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors , 2013 .

[48]  Yong-Lae Park,et al.  A Soft Strain Sensor Based on Ionic and Metal Liquids , 2013, IEEE Sensors Journal.

[49]  Changhyun Pang,et al.  Recent advances in flexible sensors for wearable and implantable devices , 2013 .

[50]  Sanat S Bhole,et al.  Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin , 2014, Science.

[51]  Pooi See Lee,et al.  Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors , 2014, Advanced materials.