General Linear Mixed Model for Analysing Longitudinal Data in Developmental Research

Many areas of psychological, social, and health research are characterised by hierarchically structured data. Growth curves are usually represented by means of a two-level hierarchical structure in which observations are the first-level units nested within subjects, the second-level units. With data such as these, the best option for analysis is the general linear mixed model, which can be used even with longitudinal data series in which intervals are not constant or for which over the passage of time there is loss of data. In this paper an overview is given of the general linear mixed model approach to the analysis of longitudinal data in developmental research. The advantages of this model in comparison with the traditional approaches for analysing longitudinal data are shown, emphasising the usefulness of modelling the covariance structure properly to achieve a precise estimation of the parameters of the model.

[1]  H. Akaike A new look at the statistical model identification , 1974 .

[2]  Rien van der Leeden,et al.  Multilevel Analysis of Repeated Measures Data , 1998 .

[3]  Russell D. Wolfinger,et al.  A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements , 1998 .

[4]  Jan de Leeuw,et al.  A Review of Two different Approaches for the Analysis of Growth Data Using Longitudinal Mixed Linear Models: Comparing Hierarchical Linear Regression (ML3), HLM) and Repeated Measures Designs with Structured Covariance Matrices (BMDP5V) , 1996 .

[5]  N. H. Timm,et al.  Univariate and Multivariate General Linear Models: Theory and Applications Using SAS â Software , 1997 .

[6]  Nan M. Laird,et al.  Using the General Linear Mixed Model to Analyse Unbalanced Repeated Measures and Longitudinal Data , 1997 .

[7]  S. Raudenbush,et al.  Application of Hierarchical Linear Models to Assessing Change , 1987 .

[8]  Jorge L. Mendoza,et al.  Analysis of repeated measurements. , 1979 .

[9]  T. Louis,et al.  General methods for analysing repeated measures. , 1988, Statistics in medicine.

[10]  Judith D. Singer,et al.  Fitting individual growth models using SAS PROC MIXED. , 2002 .

[11]  Nicholas T. Longford,et al.  FISHER SCORING ALGORITHM FOR VARIANCE COMPONENT ANALYSIS OF DATA WITH MULTILEVEL STRUCTURE , 1989 .

[12]  R. Wolfinger Covariance structure selection in general mixed models , 1993 .

[13]  I. Plewis,et al.  A Multilevel Perspective on the Design and Analysis of Intervention Studies , 1998 .

[14]  Karl J. Friston,et al.  Variance Components , 2003 .

[15]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[16]  Joop J. Hox,et al.  Applied Multilevel Analysis. , 1995 .

[17]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[18]  J. Arnau,et al.  Análisis de datos longitudinales y de curvas de crecimiento. Enfoque clásico y propuestas actuales , 2004 .

[19]  Russell D. Wolfinger,et al.  The Analysis of Repeated Measurements with Mixed-Model Adjusted F Tests , 2004 .

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  Heather Woltman,et al.  An introduction to hierarchical linear modeling , 2012 .

[22]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[23]  Guillermo Vallejo,et al.  Consequences of Misspecifying the Error Covariance Structure in Linear Mixed Models for Longitudinal Data , 2008 .

[24]  Jaume Arnau,et al.  Using linear mixed models in longitudinal studies: Application of SAS PROC MIXED , 2007 .

[25]  R. Mclean,et al.  A Unified Approach to Mixed Linear Models , 1991 .

[26]  R. Potthoff,et al.  A generalized multivariate analysis of variance model useful especially for growth curve problems , 1964 .

[27]  R C Littell,et al.  Mixed Models: Modelling Covariance Structure in the Analysis of Repeated Measures Data , 2005 .

[28]  Roel Bosker,et al.  Multilevel analysis : an introduction to basic and advanced multilevel modeling , 1999 .

[29]  Y. W. Wu,et al.  A comparison of traditional approaches to hierarchical linear modeling when analyzing longitudinal data. , 1999, Research in nursing & health.

[30]  G. Patterson,et al.  An approach to the problem of recruitment and retention rates for longitudinal research. , 1987 .

[31]  Robert L. Winkler,et al.  Comment Bayesian Model Building and Forecasting , 1985 .

[32]  Elena Losina,et al.  An introduction to hierarchical linear modelling , 1999 .

[33]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[34]  Timothy J. Robinson,et al.  Multilevel Analysis: Techniques and Applications , 2002 .

[35]  R. Wolfinger Heterogeneous Variance-Covariance Structures for Repeated Measures , 1996 .

[36]  J. Singer,et al.  Applied Longitudinal Data Analysis , 2003 .

[37]  Risto Lethonen Multilevel Statistical Models (3rd ed.) , 2005 .

[38]  Taesung Park,et al.  Covariance models for nested repeated measures data: analysis of ovarian steroid secretion data. , 2002, Statistics in medicine.

[39]  Risto Lehtonen,et al.  Multilevel Statistical Models , 2005 .

[40]  R. Wolfinger,et al.  An example of using mixed models and PROC MIXED for longitudinal data. , 1997, Journal of biopharmaceutical statistics.

[41]  Jan de Leeuw,et al.  Random Coefficient Models for Multilevel Analysis , 1986 .

[42]  G. A. Marcoulides Multilevel Analysis Techniques and Applications , 2002 .

[43]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[44]  Tom A. B. Snijders,et al.  Analysis of longitudinal data using the hierarchical linear model , 1996 .

[45]  J. Ware Linear Models for the Analysis of Longitudinal Studies , 1985 .

[46]  Michael C. Sturman,et al.  The Past, Present, and Future of Dynamic Performance Research , 2007 .

[47]  Nicholas T. Longford,et al.  Random Coefficient Models , 1994, International Encyclopedia of Statistical Science.

[48]  Calyampudi R. Rao,et al.  The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves. , 1965, Biometrika.

[49]  Stephen W. Raudenbush,et al.  Toward a coherent framework for comparing trajectories of individual change. , 2001 .

[50]  Peter C. M. Molenaar,et al.  A structural equations modeling approach to the general linear mixed model , 2001 .