A New Interval Comparison Relation and Application in Interval Number Programming for Uncertain Problems

For optimization or decision-making problems with interval uncertainty, the interval comparison relation plays a very important role, as only based on it a better or best decision can be determined. In this paper, a new kind of interval comparison relation termed as reliability-based possibility degree of interval is proposed to give quantitative evaluations on “how much better” of one interval than another, which is more suitable for engineering reliability analysis and numerical computation than the existing relations. In the new relation, the range of the comparing values is extended into the whole real number field, and the precise comparison is made possible for any pairs of intervals on the real line. Furthermore, the suggested interval comparison relation is applied to the interval number programming, and two kinds of transformation models are developed for both of the linear and nonlinear interval number programming problems, based on which the uncertain optimization problems can be changed into traditional deterministic optimization problems. Two numerical examples are finally investigated to demonstrate the effectiveness of the two transformation models.

[1]  C. Jiang,et al.  A New Uncertain Optimization Method Based on Intervals and An Approximation Management Model , 2007 .

[2]  Sukhamay Kundu,et al.  Min-transitivity of fuzzy leftness relationship and its application to decision making , 1997, Fuzzy Sets Syst..

[3]  Carlos Henggeler Antunes,et al.  Multiple objective linear programming models with interval coefficients - an illustrated overview , 2007, Eur. J. Oper. Res..

[4]  Baoding Liu,et al.  Fuzzy programming with fuzzy decisions and fuzzy simulation-based genetic algorithm , 2001, Fuzzy Sets Syst..

[5]  Tong Shaocheng,et al.  Interval number and fuzzy number linear programmings , 1994 .

[6]  M. K. Luhandjula Fuzzy optimization: an appraisal , 1989 .

[7]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[8]  R. Słowiński A multicriteria fuzzy linear programming method for water supply system development planning , 1986 .

[9]  G. P. Liu,et al.  A nonlinear interval number programming method for uncertain optimization problems , 2008, Eur. J. Oper. Res..

[10]  Shapour Azarm,et al.  Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation , 2008 .

[11]  Tapan Kumar Pal,et al.  On comparing interval numbers , 2000, Eur. J. Oper. Res..

[12]  Masahiro Inuiguchi,et al.  Minimax regret solution to linear programming problems with an interval objective function , 1995 .

[13]  Yozo Nakahara,et al.  On the linear programming problems with interval coefficients , 1992 .

[14]  Moncef Abbas,et al.  Cutting plane method for multiple objective stochastic integer linear programming , 2006, Eur. J. Oper. Res..

[15]  Manuel Laguna,et al.  A heuristic to minimax absolute regret for linear programs with interval objective function coefficients , 1999, Eur. J. Oper. Res..

[16]  Gyeong-Mi Cho,et al.  Log-barrier method for two-stage quadratic stochastic programming , 2005, Appl. Math. Comput..

[17]  K. Karczewski,et al.  A probabilistic method for ordering group of intervals , 2002 .

[18]  M. Vila,et al.  A general model for fuzzy linear programming , 1989 .

[19]  Pavel V. Sevastjanov,et al.  Two-objective method for crisp and fuzzy interval comparison in optimization , 2006, Comput. Oper. Res..

[20]  G. Facchinetti,et al.  Note on ranking fuzzy triangular numbers , 1998 .

[21]  Igor Averbakh,et al.  On the complexity of minmax regret linear programming , 2005, Eur. J. Oper. Res..

[22]  Pawel Sevastjanow,et al.  Interval Comparison Based on Dempster-Shafer Theory of Evidence , 2003, PPAM.

[23]  Cerry M. Klein,et al.  New algorithm for the ranking procedure in fuzzy decision-making , 1989, IEEE Trans. Syst. Man Cybern..

[24]  Shiang-Tai Liu,et al.  A numerical solution method to interval quadratic programming , 2007, Appl. Math. Comput..

[25]  R. Wets,et al.  Stochastic programming , 1989 .

[26]  Y. Z. Mehrjerdi A Chance Constrained Programming , 2012 .

[27]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function , 2007, Eur. J. Oper. Res..

[28]  C. Jiang,et al.  A sequential nonlinear interval number programming method for uncertain structures , 2008 .

[29]  Moti Schneider,et al.  On the use of interval mathematics in fuzzy expert systems , 1994, Int. J. Intell. Syst..

[30]  W. Yao,et al.  The basic properties of some typical systems’ reliability in interval form , 2008 .

[31]  Ronald R. Yager,et al.  A context-dependent method for ordering fuzzy numbers using probabilities , 2001, Inf. Sci..

[32]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[33]  Debjani Chakraborty,et al.  Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming , 2001, Fuzzy Sets Syst..

[34]  Gui-rong Liu,et al.  Computational Inverse Techniques in Nondestructive Evaluation , 2003 .

[35]  Xu Han,et al.  An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method , 2007 .

[36]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[37]  Xu Ze,et al.  Possibility degree method for ranking interval numbers andits application , 2003 .

[38]  Sukhamay Kundu,et al.  Preference relation on fuzzy utilities based on fuzzy leftness relation on intervals , 1998, Proceedings Mexico-USA Collaboration in Intelligent Systems Technologies..

[39]  Jian-Bo Yang,et al.  A preference aggregation method through the estimation of utility intervals , 2005, Comput. Oper. Res..

[40]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions , 2009, Eur. J. Oper. Res..

[41]  G. G. Wang,et al.  Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .

[42]  Hsien-Chung Wu On interval-valued nonlinear programming problems , 2008 .

[43]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[44]  Ali Abbasi Molai,et al.  LINEAR PROGRAMMING PROBLEM WITH INTERVAL COEFFICIENTS AND AN INTERPRETATION FOR ITS CONSTRAINTS , 2008 .

[45]  Shiang-Tai Liu,et al.  Posynomial geometric programming with interval exponents and coefficients , 2008, Eur. J. Oper. Res..