The multivariate Poisson-log normal distribution

SUMMARY The statistical analysis of multivariate counts has proved difficult because of the lack of a parametric class of distributions supporting a rich enough correlation structure. With increasing availability of powerful computing facilities an obvious candidate for consideration is now the multivariate log normal mixture of independent Poisson distributions, the multivariate Poisson-log normal distribution. The properties of this discrete multivariate distribution are studied and its uses in a variety of applications to multivariate count data are illustrated.

[1]  A. M'Kendrick Applications of Mathematics to Medical Problems , 1925, Proceedings of the Edinburgh Mathematical Society.

[2]  J. T. Campbell,et al.  The Poisson Correlation Function , 1934 .

[3]  A. C. Aitken A further note on multivariate selection , 1936 .

[4]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[5]  F. W. Preston The Commonness, And Rarity, of Species , 1948 .

[6]  F. J. Anscombe,et al.  Sampling theory of the negative binomial and logarithmic series distributions. , 1950, Biometrika.

[7]  P. Grundy THE EXPECTED FREQUENCIES IN A SAMPLE OF AN ANIMAL POPULATION IN WHICH THE ABUNDANCES OF SPECIES ARE LOG-NORMALLY DISTRIBUTED. PART I , 1951 .

[8]  A. G. Arbous,et al.  Accident statistics and the concept of accident-proneness , 1951 .

[9]  Jerzy Neyman,et al.  Contributions to the Theory of Accident Proneness. 1. An Optimistic Model of the Correlation Between Light and Severe Accidents , 1952 .

[10]  J. S. Maritz,et al.  Note on a certain family of discrete distributions , 1952 .

[11]  Henry Teicher,et al.  On the multivariate poisson distribution , 1954 .

[12]  R. Cassie Frequency Distribution Models in the Ecology of Plankton and Other Organisms , 1962 .

[13]  David R. Cox,et al.  Further Results on Tests of Separate Families of Hypotheses , 1962 .

[14]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[15]  P. Holgate Estimation for the bivariate Poisson distribution , 1964 .

[16]  M. A. Hamdan,et al.  A Note on the Bivariate Poisson Distribution , 1969 .

[17]  Philip Holgate The modality of some compound Poisson distributions , 1970 .

[18]  J. K. Ord,et al.  Families of frequency distributions , 1973 .

[19]  R. A. Kempton,et al.  Log-Series and Log-Normal Parameters as Diversity Discriminants for the Lepidoptera , 1974 .

[20]  M. Bulmer On Fitting the Poisson Lognormal Distribution to Species-Abundance Data , 1974 .

[21]  H. S. Steyn On the Multivariate Poisson Normal Distribution , 1976 .

[22]  J. Nash Compact Numerical Methods for Computers , 2018 .

[23]  Robert C. Griffiths,et al.  ASPECTS OF CORRELATION IN BIVARIATE POISSON DISTRIBUTIONS AND PROCESSES , 1979 .

[24]  D. D. Reid The Poisson Lognormal Distribution and Its Use as a Model of Plankton Aggregation , 1981 .

[25]  Ingram Olkin,et al.  A Family of Bivariate Distributions Generated by the Bivariate Bernoulli Distribution , 1985 .

[26]  James F. Nelson Multivariate Gamma-Poisson Models , 1985 .

[27]  J. Aitchison A General Class of Distributions on the Simplex , 1985 .