Forest type classification with combination of advanced polarimetric decompositions and textures of L-band synthetic aperture radar data

Abstract. Information on distribution of forest types and land cover classes is essential for decision making and significant in climate regulation, biodiversity conservation, and societal issues. An approach for the combination of advanced polarimetric decompositions and textures of Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar full polarimetric data for the purpose of forest type classification is proposed. Using a support vector machine (SVM) classifier, we classified forest types over a selected Indian region. Further, we tested the classification performance of the Wishart method for the same forest types. The classified results were assessed with confusion matrix-based statistics. The results suggest that incorporation of various polarimetric decompositions features into gray-level co-occurrence matrix textures refines the SVM classification overall accuracy (OA) from 73.82% (k=0.69) to 76.34% (k=0.72). The Wishart supervised classification algorithm has the OA of 73.38% (kappa=0.68). We observed that integration of polarimetric information with textures can give complimentary information in forest type discrimination and produce high accuracy maps. Further, this approach overcomes the limitations of optical remote sensing data in continuous cloud coverage areas.

[1]  Hiroyoshi Yamada,et al.  Stable Decomposition of Mueller Matrix , 1997 .

[2]  Laurent Ferro-Famil,et al.  A general model-based polarimetric decomposition scheme for vegetated areas. , 2009 .

[3]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[4]  Jun Lu,et al.  NEST: An esa open source Toolbox for scientific exploitation of SAR data , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[5]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[6]  J. V. Soares,et al.  Mapping deforestation and land use in Amazon rainforest by using SIR-C imagery , 1997 .

[7]  Dar A. Roberts,et al.  Studies of land-cover, land-use, and biophysical properties of vegetation in the Large Scale Biosphere Atmosphere experiment in Amazonia , 2003 .

[8]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[9]  Jian Yang,et al.  Four-Component Decomposition of Polarimetric SAR Images With Deorientation , 2011, IEEE Geoscience and Remote Sensing Letters.

[10]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[11]  J. Dubois,et al.  Evaluation Of The Grey-level Co-occurrence Matrix Method For Land-cover Classification Using Spot Imagery , 1990 .

[12]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[13]  Emmanuel Tonye,et al.  Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images , 2002 .

[14]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[15]  Konstantinos Papathanassiou,et al.  Forest Height Estimation by means of Pol-InSAR Limitations posed by Temporal Decorrelation , 2009 .

[16]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[18]  E. Pottier,et al.  Advanced Concepts In Polarimetry. Part 2: Polarimetric Target Classification , 2005 .

[19]  Yasser Maghsoudi,et al.  Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Kamal Sarabandi,et al.  Knowledge-based classification of polarimetric SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[21]  Giorgos Mountrakis,et al.  Assessing integration of intensity, polarimetric scattering, interferometric coherence and spatial texture metrics in PALSAR-derived land cover classification , 2014 .

[22]  Corina da Costa Freitas,et al.  Classifying Multifrequency Fully Polarimetric Imagery With Multiple Sources of Statistical Evidence and Contextual Information , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[23]  D. Lu,et al.  Land-cover classification in a moist tropical region of Brazil with Landsat Thematic Mapper imagery , 2011 .

[24]  A. O. Varghese,et al.  Analysis of different polarimetric target decomposition methods in forest density classification using C band SAR data , 2016 .

[25]  Jian Yang,et al.  Three-Component Model-Based Decomposition for Polarimetric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[26]  V. Liesenberg,et al.  Object-oriented and pixel-based classification approaches to classify tropical successional stages using airborne high–spatial resolution images , 2016 .

[27]  João Roberto dos Santos,et al.  Land Use and Land Cover Mapping in the Brazilian Amazon Using Polarimetric Airborne P-Band SAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[29]  Xin Niu,et al.  Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach , 2013 .

[30]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[31]  Jakob J. Vanzyl,et al.  Application of Cloude's target decomposition theorem to polarimetric imaging radar data , 1993 .

[32]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[33]  Evlyn Márcia Leão de Moraes Novo,et al.  Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. , 2016 .

[34]  Xia Li,et al.  A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data , 2012 .

[35]  R. Hall,et al.  Incorporating texture into classification of forest species composition from airborne multispectral images , 2000 .

[36]  Heather McNairn,et al.  The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[38]  Jean-Claude Souyris,et al.  Support Vector Machine for Multifrequency SAR Polarimetric Data Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[40]  Andrew K. Skidmore,et al.  New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[41]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[42]  J. Huynen Phenomenological theory of radar targets , 1970 .

[43]  Houra Rais,et al.  Conservative Polarimetric Scatterers and Their Role in Incorrect Extensions of the Cameron Decomposition , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Peng Gong,et al.  Remote Sensing and Image Analysis , 1994 .

[45]  Peijun Du,et al.  Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features , 2015 .

[46]  Janet Franklin,et al.  Mapping land-cover modifications over large areas: A comparison of machine learning algorithms , 2008 .

[47]  Jong-Sen Lee,et al.  Fuzzy classification of earth terrain covers using complex polarimetric SAR data , 1996 .

[48]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[49]  Ye Zhang,et al.  Multiple-Component Scattering Model for Polarimetric SAR Image Decomposition , 2008, IEEE Geoscience and Remote Sensing Letters.

[50]  Eric Pottier,et al.  Application of the «H / A / α» Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution , 2000 .

[51]  Luciano Vieira Dutra,et al.  A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region , 2012 .

[52]  Mingsheng Liao,et al.  Texture Classification of PolSAR Data Based on Sparse Coding of Wavelet Polarization Textons , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Michael A. Wulder,et al.  Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas , 2002 .

[55]  W. Holm,et al.  On radar polarization mixed target state decomposition techniques , 1988, Proceedings of the 1988 IEEE National Radar Conference.

[56]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[57]  Prasad S. Thenkabail,et al.  Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data , 2005 .

[58]  Marc Acheroy,et al.  Fusion of PolSAR and PolInSAR data for land cover classification , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[59]  Rangaswamy Madugundu,et al.  Coherence-based land cover classification in forested areas of Chattisgarh, Central India, using environmental satellite—advanced synthetic aperture radar data , 2011 .

[60]  Eric Pottier Overview of the PolSARpro v4.0 Software , 2009 .

[61]  H. Padalia,et al.  Evaluation of RISAT-1 SAR data for tropical forestry applications , 2017 .

[62]  S. Cloude Target decomposition theorems in radar scattering , 1985 .

[63]  Masanobu Shimada,et al.  Assessment of ALOS PALSAR 50 m Orthorectified FBD Data for Regional Land Cover Classification by Support Vector Machines , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[65]  G. H. Rosenfield,et al.  A coefficient of agreement as a measure of thematic classification accuracy. , 1986 .

[66]  Sandra Lowe,et al.  Classification Methods For Remotely Sensed Data , 2016 .