Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression.

Transposable elements (TEs) are ubiquitous genomic parasites. The deleterious consequences of the presence and activity of TEs have fueled debate about the evolutionary forces countering their expansion. Purifying selection is thought to purge TE insertions from the genome, and TE sequences are targeted by hosts for epigenetic silencing. However, the interplay between epigenetic and evolutionary forces countering TE expansion remains unexplored. Here we analyze genomic, epigenetic, and population genetic data from Arabidopsis thaliana to yield three observations. First, gene expression is negatively correlated with the density of methylated TEs. Second, the signature of purifying selection is detectable for methylated TEs near genes but not for unmethylated TEs or for TEs far from genes. Third, TE insertions are distributed by age and methylation status, such that older, methylated TEs are farther from genes. Based on these observations, we present a model in which host silencing of TEs near genes has deleterious effects on neighboring gene expression, resulting in the preferential loss of methylated TEs from gene-rich chromosomal regions. This mechanism implies an evolutionary tradeoff in which the benefit of TE silencing imposes a fitness cost via deleterious effects on the expression of nearby genes.

[1]  J. Poulain,et al.  A Role for RNAi in the Selective Correction of DNA Methylation Defects , 2009, Science.

[2]  Christopher J. Hale,et al.  RNA Polymerase IV Functions in Paramutation in Zea mays , 2009, Science.

[3]  D. Schübeler,et al.  Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. , 2009, Genome research.

[4]  B. Gaut,et al.  Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata , 2008, Proceedings of the National Academy of Sciences.

[5]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[6]  Xiaoyu Zhang The Epigenetic Landscape of Plants , 2008, Science.

[7]  B. Liu,et al.  Small RNA-Directed Epigenetic Natural Variation in Arabidopsis thaliana , 2008, PLoS genetics.

[8]  Justin O. Borevitz,et al.  Global Analysis of Genetic, Epigenetic and Transcriptional Polymorphisms in Arabidopsis thaliana Using Whole Genome Tiling Arrays , 2008, PLoS genetics.

[9]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[10]  Brandon S Gaut,et al.  Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. , 2007, Molecular biology and evolution.

[11]  C. Bergman,et al.  Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[12]  Guojun Yang,et al.  Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana , 2007, Proceedings of the National Academy of Sciences.

[13]  R. Doerge,et al.  Epigenetic Natural Variation in Arabidopsis thaliana , 2007, PLoS biology.

[14]  S. Henikoff,et al.  DNA demethylation in the Arabidopsis genome , 2007, Proceedings of the National Academy of Sciences.

[15]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[16]  R. Lister SP14 Genome-Wide High-Resolution Mapping and Functional Analysis of DNA Methylation , 2007 .

[17]  S. Henikoff,et al.  Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription , 2007, Nature Genetics.

[18]  J. Dvorak,et al.  Recombination: an underappreciated factor in the evolution of plant genomes , 2007, Nature Reviews Genetics.

[19]  B. Gaut,et al.  Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata , 2007, BMC Evolutionary Biology.

[20]  S. Wessler,et al.  Dramatic amplification of a rice transposable element during recent domestication , 2006, Proceedings of the National Academy of Sciences.

[21]  Rod A Wing,et al.  Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. , 2006, Genome research.

[22]  S. Jackson,et al.  Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. , 2006, Genome research.

[23]  M. Pellegrini,et al.  Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis , 2006, Cell.

[24]  Shivakundan Singh Tej,et al.  Elucidation of the Small RNA Component of the Transcriptome , 2005, Science.

[25]  Mattias Jakobsson,et al.  The Pattern of Polymorphism in Arabidopsis thaliana , 2005, PLoS biology.

[26]  Ricardo Almeida,et al.  RNA silencing and genome regulation. , 2005, Trends in cell biology.

[27]  V. Pereira Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome , 2004, Genome Biology.

[28]  C. Bustamante,et al.  Population Genetics of Polymorphism and Divergence for Diploid Selection Models With Arbitrary Dominance , 2004, Genetics.

[29]  Blake C Meyers,et al.  The use of MPSS for whole-genome transcriptional analysis in Arabidopsis. , 2004, Genome research.

[30]  Michael Black,et al.  Role of transposable elements in heterochromatin and epigenetic control , 2004, Nature.

[31]  Jinchuan Xing,et al.  Differential alu mobilization and polymorphism among the human and chimpanzee lineages. , 2004, Genome research.

[32]  D. Zilberman,et al.  RNA Silencing Genes Control de Novo DNA Methylation , 2004, Science.

[33]  M. G. Kidwell,et al.  Transposable elements and the evolution of genome size in eukaryotes , 2002, Genetica.

[34]  S. Iida,et al.  Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. , 2004, Advances in biophysics.

[35]  Lilya V. Matyunina,et al.  Ltr retrotransposons and the evolution of eukaryotic enhancers , 2004, Genetica.

[36]  Kevin Thornton,et al.  libsequence: a C++ class library for evolutionary genetic analysis , 2003, Bioinform..

[37]  L. Duret,et al.  Patterns of selection against transposons inferred from the distribution of Tc1, Tc3 and Tc5 insertions in the mut-7 line of the nematode Caenorhabditis elegans. , 2003, Genetics.

[38]  Joseph M. Dale,et al.  Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome , 2003, Science.

[39]  M. Freeling,et al.  Mu killer causes the heritable inactivation of the Mutator family of transposable elements in Zea mays. , 2003, Genetics.

[40]  S. Wright,et al.  Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. , 2003, Genome research.

[41]  A. E. Hirsh,et al.  Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. , 2003, Molecular biology and evolution.

[42]  Cédric Feschotte,et al.  Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). , 2003, Genetics.

[43]  E. Galun Transposable Elements , 2003, Springer Netherlands.

[44]  Brian Charlesworth,et al.  On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.

[45]  Manolo Gouy,et al.  Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. , 2002, Genome research.

[46]  D. Charlesworth,et al.  Breeding systems and genome evolution. , 2001, Current opinion in genetics & development.

[47]  B. Charlesworth,et al.  Rates of movement and distribution of transposable elements in Drosophila melanogaster: in situ hybridization vs Southern blotting data. , 2001, Genetical research.

[48]  S. Wright,et al.  Population dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis. , 2001, Genetics.

[49]  L. Duret,et al.  Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. , 2000, Genetics.

[50]  M. A. Koch,et al.  Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). , 2000, Molecular biology and evolution.

[51]  J. Deragon,et al.  SINE Retroposons Can Be Used In Vivo as Nucleation Centers for De Novo Methylation , 2000, Molecular and Cellular Biology.

[52]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[53]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[54]  D. Ginty,et al.  Hypermethylated SUPERMAN Epigenetic Alleles in Arabidopsis , 1997 .

[55]  J. Brookfield,et al.  The role of host factors in the population dynamics of selfish transposable elements. , 1997, Journal of theoretical biology.

[56]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[57]  J. Bennetzen,et al.  Mu1-related transposable elements of maize preferentially insert into low copy number DNA. , 1995, Genetics.

[58]  T. Mackay,et al.  The genomic rate of transposable element movement in Drosophila melanogaster. , 1995, Molecular biology and evolution.

[59]  B. Charlesworth,et al.  The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. , 1994, Genetical research.

[60]  D. Lindsley,et al.  The Genome of Drosophila Melanogaster , 1992 .

[61]  C. Langley,et al.  Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. , 1991, Genetics.

[62]  D. Charlesworth,et al.  Effects of a change in the level of inbreeding on the genetic load , 1991, Nature.

[63]  A. Barkan,et al.  Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[64]  B. Charlesworth,et al.  The population genetics of Drosophila transposable elements. , 1989, Annual review of genetics.

[65]  R. Hudson,et al.  On the role of unequal exchange in the containment of transposable element copy number. , 1988, Genetical research.

[66]  C. Aquadro,et al.  Sequence evolution within populations under multiple types of mutation. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. G. Kidwell Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation. , 1985, Genetics.

[68]  R. Jaenisch,et al.  Retrovirus-induced de novo methylation of flanking host sequences correlates with gene inactivity , 1985, Nature.

[69]  D. Sperlich [Population genetics. (I. Drosophila)]. , 1967, Fortschritte der Zoologie.