Cauchy moments and dispersion coefficients using coupled cluster linear response theory

Expressions for the even Cauchy moments for nonvariational methods have been derived using the time-averaged quasienergy Lagrangian technique. The expressions obtained require the solution of linear equations but do not involve a sum over individual excited-state contributions. An implementation is reported for the coupled cluster models CCS, CC2, and CCSD and calculations have been performed for the Cauchy moments and the Verdet and Cotton–Mouton constants of the Ne atom and for the C6 dispersion coefficient of the Ne2 dimer.

[1]  P. Jørgensen,et al.  Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene , 1996 .

[2]  P. Wormer,et al.  Ab initio dispersion coefficients for interactions involving rare-gas atoms , 1992 .

[3]  P. Fowler,et al.  The magnetic hyperpolarizability anisotropy of some two-electron systems , 1989 .

[4]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[5]  A. Prodell,et al.  Measurement of the magnetic birefringence of neon gas , 1991 .

[6]  P. Jørgensen,et al.  First-order one-electron properties in the integral-direct coupled cluster singles and doubles model , 1997 .

[7]  M. Packer,et al.  Correlated dipole oscillator sum rules , 1994 .

[8]  W. Byers Brown,et al.  Recent Developments in Perturbation Theory , 1964 .

[9]  B. A. Hess,et al.  TDMP2 calculation of dynamic multipole polarizabilities and dispersion coefficients of the triplebonded molecules CO, N2, CN−, and NO+ , 1996 .

[10]  A. E. Kingston,et al.  The refractive indices and Verdet constants of the inert gases , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  D. H. Liebenberg,et al.  The Faraday Effect in Gases and Vapors. I , 1954 .

[12]  B. Silvi,et al.  Coupled Hartree-Fock method for the calculation of Cauchy moments for atomic and molecular dynamic polarizabilities , 1984 .

[13]  B. A. Hess,et al.  TDMP2 Calculation of Dynamic Multipole Polarizabilities and Dispersion Coefficients of the Noble Gases Ar, Kr, Xe, and Rn , 1996 .

[14]  C. Hättig,et al.  Correlated frequency-dependent polarizabilities and dispersion coefficients in the time-dependent second-order Møller-Plesset approximation , 1995 .

[15]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[16]  P. Jørgensen,et al.  The magnetic hyperpolarizability anisotropy of the neon atom , 1992 .

[17]  P. Taylor,et al.  The polarizabilities of neon , 1989 .

[18]  M. J. Jamieson A time-dependent Hartree-Fock study of dispersion in the Cotton-Mouton effect for the helium isoelectronic sequence , 1991 .

[19]  Jeppe Olsen,et al.  Excitation energies of BH, CH2 and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled cluster models , 1995 .

[20]  D. M. Bishop,et al.  Calculation of dynamic magnetic hyperpolarizability anisotropies for He, Ne and Ar , 1992 .

[21]  P. Jørgensen,et al.  Brueckner coupled cluster response functions , 1994 .

[22]  P. Wormer,et al.  Frequency‐dependent polarizabilities and van der Waals coefficients of half‐open‐shell systems in the time‐dependent coupled Hartree–Fock approximation , 1990 .

[23]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[24]  D. M. Bishop,et al.  Calculation of the Verdet constants for H2, N2, CO, and FH , 1993 .

[25]  P. Jørgensen,et al.  Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory , 1997 .

[26]  F. Aiga,et al.  Higher‐order response theory based on the quasienergy derivatives: The derivation of the frequency‐dependent polarizabilities and hyperpolarizabilities , 1993 .

[27]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[28]  P. W. Langhoff,et al.  Aspects of Time-Dependent Perturbation Theory , 1972 .

[29]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[30]  F. Aiga,et al.  CALCULATION OF FREQUENCY-DEPENDENT POLARIZABILITIES AND HYPERPOLARIZABILITIES BY THE SECOND-ORDER MOLLER-PLESSET PERTURBATION THEORY , 1996 .

[31]  P. W. Langhoff,et al.  Padé Approximants for Two‐ and Three‐Body Dipole Dispersion Interactions , 1970 .

[32]  J. Olsen,et al.  C6 dispersion coefficients in multiconfiguration self‐consistent field linear response theory , 1990 .

[33]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[34]  Ashok Kumar,et al.  Integrated dipole oscillator strengths and dipole properties for Ne, Ar, Kr, Xe, HF, HCl, and HBr , 1985 .