Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media

An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) — if uniformly controlled — will quantify contractivity (limit expansivity) of the flow.

[1]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[2]  R. Dudley Probabilities and metrics : convergence of laws on metric spaces, with a view to statistical testing , 1976 .

[3]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[4]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[5]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[6]  D. Hilhorst,et al.  A sensity dependent diffussion equation in population dynamics: stabilization to equilibrium , 1986 .

[7]  Y. Brenier The least action principle and the related concept of generalized flows for incompressible perfect fluids , 1989 .

[8]  M. Röckner,et al.  Dirichlet forms on topological vector spaces: closability and a Cameron-Martin formula , 1990 .

[9]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[10]  L. Evans Measure theory and fine properties of functions , 1992 .

[11]  K. Ball,et al.  Sharp uniform convexity and smoothness inequalities for trace norms , 1994 .

[12]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[13]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[14]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[15]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[16]  R. McCann Equilibrium Shapes for Planar Crystals in an External Field , 1998 .

[17]  S. Rachev,et al.  Mass transportation problems , 1998 .

[18]  Emanuele Caglioti,et al.  A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media , 1998 .

[19]  Emanuele Caglioti,et al.  A hydrodynamic model arising in the context of granular media , 1999 .

[20]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[21]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[22]  W. Gangbo,et al.  Shape recognition via Wasserstein distance , 2000 .

[23]  Giuseppe Toscani,et al.  One-dimensional kinetic models of granular flows , 2000 .

[24]  J. A. Carrillo,et al.  Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .

[25]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[26]  Philippe Biane,et al.  Free diffusions, free entropy and free Fisher information , 2001 .

[27]  Ansgar Jüngel,et al.  Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .

[28]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[29]  Dario Cordero-Erausquin,et al.  Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .

[30]  M. Agueh Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.

[31]  W. Gangbo,et al.  Constrained steepest descent in the 2-Wasserstein metric , 2003, math/0312063.

[32]  C. Villani Topics in Optimal Transportation , 2003 .

[33]  Christian Houdré,et al.  Inequalities for generalized entropy and optimal transportation , 2003 .

[34]  M. Agueh,et al.  Geometric inequalities via a general comparison principle for interacting gases , 2003 .

[35]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[36]  M. Agueh Asymptotic behavior for doubly degenerate parabolic equations , 2003 .

[37]  M. Agueh,et al.  The optimal evolution of the free energy of interacting gases and its applications , 2003 .

[38]  C. Villani,et al.  A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .

[39]  Displacement Convexity for the Generalized Orthogonal Ensemble , 2004 .

[40]  G. Toscani,et al.  Long-Time Asymptotics of Kinetic Models of Granular Flows , 2004 .

[41]  L. Ambrosio,et al.  Gradient flows with metric and differentiable structures, and applications to the Wasserstein space , 2004 .

[42]  Giuseppe Toscani,et al.  Finite speed of propagation in porous media by mass transportation methods , 2004 .

[43]  J. Rodrigues,et al.  Recent Advances in the Theory and Applications of Mass Transport , 2004 .

[44]  Songmu Zheng,et al.  Nonlinear evolution equations , 2004 .

[45]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[46]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[47]  Y. Brenier,et al.  CONTRACTIVE METRICS FOR SCALAR CONSERVATION LAWS , 2005 .

[48]  José A. Carrillo,et al.  Long‐time asymptotics via entropy methods for diffusion dominated equations , 2005 .

[49]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[50]  Karl-Theodor Sturm,et al.  Convex functionals of probability measures and nonlinear diffusions on manifolds , 2005 .

[51]  Karl-Theodor Sturm Generalized Ricci bounds and convergence of metric measure spaces , 2005 .

[52]  Giuseppe Toscani,et al.  WASSERSTEIN METRIC AND LARGE-TIME ASYMPTOTICS OF NONLINEAR DIFFUSION EQUATIONS , 2005 .

[53]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[54]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .