Integrating Similarity Retrieval and Skyline Exploration Via Relevance Feedback

Similarity retrieval have been widely used in many practical search applications. A similarity query model can be viewed as a logical combination of a set of similarity predicates. A user can initialize a query model, but model parameters or the model itself may be inadequately specified. As a result, a retrieval system cannot guarantee that it has presented all the relevant tuples to the user. In this paper, we propose a framework that integrates the similarity retrieval and skyline exploration. Using the relevance feedback as a way to constrain the search space, our framework can intelligently explore only a necessary portion of data that contains all the relevant tuples. Our framework is also flexible enough to incorporate model refinement techniques to retrieving relevant results as early as possible.