Solving block-banded block Toeplitz systems with banded Toeplitz blocks

We introduce the concept of (epsilon) -displacement rank, that allows us to devise a fast algorithm for the approximate solution of BBBT/BTB (Block Banded Block Toeplitz with Banded Toeplitz Blocks) systems by means of cyclic reduction. We also introduce the concept of incomplete displacement block LU factorization of a Toeplitz-like matrix, where the displacement structure is imposed to the blocks of the factors L and U. The role of the matrix LU as preconditioner is discussed. Finally we propose another preconditioner obtained by extending a BBBT/BTB matrix to a banded Toeplitz matrix. Some open problems are addressed.