Optical techniques for image compression

Optical computing has recently become a very active research field. The advantage of optics is its capability of providing highly parallel operations in a three dimensional space. The authors propose optical architectures to execute various image compression techniques. They optically implement the following compression techniques: transform coding; vector quantization; and interframe coding; They show many generally used transform coding methods, for example, the cosine transform, can be implemented by a simple optical system. The transform coding can be carried out in constant time. Most of this paper is concerned with a sophisticated optical system for vector quantization using holographic associative matching. Holographic associative matching provided by multiple exposure holograms can offer advantageous techniques for vector quantization based compression schemes. Photorefractive crystals, which provide high density recording in real time, are used as the holographic media. The reconstruction alphabet can be dynamically constructed through training or stored in the photorefractive crystal in advance. Encoding a new vector can be carried out by holographic associative matching in constant time. An extension to interframe coding is also discussed.<<ETX>>

[1]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[2]  G G Mu,et al.  Real-time holographic associative memory using doped LiNbO3 in a phase-conjugating resonator. , 1990, Optics letters.

[3]  D. Casasent,et al.  Coherent optical pattern recognition , 1979, Proceedings of the IEEE.

[4]  Kazuo Kyuma,et al.  Demonstration of an all‐optical associative holographic memory , 1986 .

[5]  E. Maniloff,et al.  Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media. , 1989, Optics letters.

[6]  Dror G. Feitelson Optical computing - a survey for computer scientists , 1988 .

[7]  D. Psaltis,et al.  Volume holographic interconnections with maximal capacity and minimal cross talk , 1989 .

[8]  Kendall Preston,et al.  Coherent optical computers , 1972 .

[9]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[10]  R. R. Clarke Transform coding of images , 1985 .

[11]  James A. Storer,et al.  DCC '92 : Data Compression Conference , 1991 .

[12]  R Barakat,et al.  Lower bounds on the computational efficiency of optical computing systems. , 1987, Applied optics.

[13]  J. Horner,et al.  Single spatial light modulator joint transform correlator. , 1989, Applied optics.

[14]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[15]  G. J. Dunning,et al.  Holographic associative memory with nonlinearities in the correlation domain. , 1987, Applied optics.

[16]  Francis T. S. Yu,et al.  Optical Information Processing , 1982 .

[17]  H Lee Volume holographic global and local interconnecting patterns with maximal capacity and minimal first-order crosstalk. , 1989, Applied optics.

[18]  H. John Caulfield Associative mappings by optical holography , 1985 .

[19]  J. Goodman Introduction to Fourier optics , 1969 .

[20]  W. J. Burke,et al.  Multiple storage and erasure of fixed holograms in Fe−doped LiNbO3 , 1975 .

[21]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[22]  H. B. Brown,et al.  Application Of The Liquid Crystal Light Valve To Real-Time Optical Data Processing , 1978 .

[23]  John H. Reif,et al.  Efficient Parallel Algorithms for Optical Computing with the DFT Primitive , 1990, FSTTCS.

[24]  Anil K. Jain,et al.  Image data compression: A review , 1981, Proceedings of the IEEE.

[25]  Jeffrey D Ullma Computational Aspects of VLSI , 1984 .

[26]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[27]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[28]  Don A. Gregory,et al.  Joint transform correlation using an optically addressed ferroelectric LC spatial light modulator. , 1990, Applied optics.

[29]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[30]  Nasser M. Nasrabadi,et al.  Image coding using vector quantization: a review , 1988, IEEE Trans. Commun..

[31]  T. E. Bell,et al.  Optical computing: A field in flux , 1986, IEEE Spectrum.

[32]  A. V. Lugt,et al.  Coherent optical processing , 1974 .

[33]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[34]  B H Soffer,et al.  Associative holographic memory with feedback using phase-conjugate mirrors. , 1986, Optics letters.

[35]  W. Phillips,et al.  Volume Phase Holographic Storage In Ferroelectric Crystals , 1978 .