Developments in industrially important thermostable enzymes: a review.

Cellular components of thermophilic organisms (enzymes, proteins and nucleic acids) are also thermostable. Apart from high temperature they are also known to withstand denaturants of extremely acidic and alkaline conditions. Thermostable enzymes are highly specific and thus have considerable potential for many industrial applications. The use of such enzymes in maximising reactions accomplished in the food and paper industry, detergents, drugs, toxic wastes removal and drilling for oil is being studied extensively. The enzymes can be produced from the thermophiles through either optimised fermentation of the microorganisms or cloning of fast-growing mesophiles by recombinant DNA technology. In this review, the source microorganisms and properties of thermostable starch hydrolysing amylases, xylanases, cellulases, chitinases, proteases, lipases and DNA polymerases are discussed. The industrial needs for such specific thermostable enzyme and improvements required to maximize their application in the future are also suggested.

[1]  H. Nakanishi,et al.  Thermophilic phospholipase A 2 in the cytosolic fraction from the archaeon Pyrococcus h , 2000 .

[2]  R. Greasham,et al.  Chemically defined media for commercial fermentations , 1999, Applied Microbiology and Biotechnology.

[3]  O. D. Allen,et al.  Vigorous Proteolysis: Reliming in the Presence of an Alkaline Protease and Bating (Post Liming) with an Extremophile Protease , 2002 .

[4]  Yuzuru Suzuki,et al.  Production of extracellular thermostable pullulanase by an amylolytic obligately thermophilic soil bacterium, Bacillus stearothermophilus KP 1064 , 2004, European journal of applied microbiology and biotechnology.

[5]  S. B. Sawant,et al.  Studies on the lipozyme‐catalyzed synthesis of butyl laurate , 1995, Biotechnology and bioengineering.

[6]  T. Kudo,et al.  Chemo-enzymatic synthesis of 3-(2-naphthyl)- L-alanine by an aminotransferase from the extreme thermophile, Thermococcus profundus , 2001, Biotechnology Letters.

[7]  S. Khanna,et al.  Production of a thermostable alkali-tolerant xylanase from Bacillus circulans AB 16 grown on wheat straw , 2000 .

[8]  V. Sobolev,et al.  Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans , 1997, Applied and environmental microbiology.

[9]  G. Seenayya,et al.  Thermostable pullulanase and α-amylase activity from Clostridium thermosulfurogenes SV9—Optmization of culture conditions for enzyme production , 1996 .

[10]  W. D. Cowan Enzymes in food processing , 1983 .

[11]  W. Schürmann,et al.  Text-book of Microbiology and Immunobiology. , 1939 .

[12]  A Bairoch,et al.  New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. , 1993, The Biochemical journal.

[13]  P. Nigam,et al.  Enzyme and microbial systems involved in starch processing. , 1995 .

[14]  C. Schmidt-Dannert,et al.  Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. , 1994, Biochimica et biophysica acta.

[15]  W. Liebl,et al.  Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima. , 1998, FEMS microbiology letters.

[16]  V. Zverlov,et al.  Purification and some properties of Thermotoga neapolitana thermostable xylanase B expressed in E. coli cells. , 1997, Biochemistry. Biokhimiia.

[17]  D. Kyriakidis,et al.  Biotechnologically relevant enzymes from Thermus thermophilus , 2001, Applied Microbiology and Biotechnology.

[18]  J. E. Alter,et al.  Purification and Characterization of a Thermostable alpha‐Amylase from Bacillus licheniformis , 1979 .

[19]  J. Duarte,et al.  Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties , 2002 .

[20]  V. V. Mozhaev Mechanism-based strategies for protein thermostabilization. , 1993, Trends in biotechnology.

[21]  G. Gottschalk,et al.  Production of Thermostable alpha-Amylase, Pullulanase, and alpha-Glucosidase in Continuous Culture by a New Clostridium Isolate. , 1987, Applied and environmental microbiology.

[22]  Y. Linko,et al.  An investigation of crude lipases for hydrolysis, esterification, and transesterification , 1996 .

[23]  H. Atomi,et al.  Extremely Stable and Versatile Carboxylesterase from a Hyperthermophilic Archaeon , 2002, Applied and Environmental Microbiology.

[24]  B. Norman,et al.  Bacillus acidopullulyticus Pullulanase: application and regulatory aspects for use in the food industry [Promozyme]. , 1984 .

[25]  G. Antranikian,et al.  Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli , 1995, Applied and environmental microbiology.

[26]  J. Shaw,et al.  Purification and properties of an extracellular a-amylase from Thermus sp. , 1995 .

[27]  K. Spindler,et al.  Chitin metabolism: a target for drugs against parasites , 2004, Parasitology Research.

[28]  Purificación López-García,et al.  DNA Supercoiling and Temperature Adaptation: A Clue to Early Diversification of Life? , 1999, Journal of Molecular Evolution.

[29]  T. Oh,et al.  Occurrence of thermostable lipase in thermophilic Bacillus sp. strain 398 , 1994 .

[30]  C. Schmidt-Dannert,et al.  Thermoalkalophilic lipase of Bacillus thermocatenulatus large-scale production, purification and properties: aggregation behaviour and its effect on activity. , 1997, Journal of biotechnology.

[31]  J. Zeikus,et al.  Continuous Production of Thermostable β-Amylase with Clostridium thermosulfurogenes: Effect of Culture Conditions and Metabolite Levels on Enzyme Synthesis and Activity , 1989, Applied and environmental microbiology.

[32]  Raymond P. Mariella,et al.  Development of a battery-powered hand-held real-time PCR instrument , 2001, SPIE BiOS.

[33]  M. Adams,et al.  Release of lignin from kraft pulp by a hyperthermophilic xylanase from Thermatoga maritima , 1997 .

[34]  K. Watanabe,et al.  Purification and some properties of alkaline pullulanase from a strain of bacillus no. 202-1, an alkalophilic microorganism. , 1975, Biochimica et biophysica acta.

[35]  G. R. Castro,et al.  Thermostable alkaline proteases of Bacillus licheniformis MIR 29: isolation, production and characterization , 1996, Applied Microbiology and Biotechnology.

[36]  D. Cowan Industrial enzyme technology , 1996 .

[37]  Y. Guéguen,et al.  Characterization of a Highly Thermostable Alkaline Phosphatase from the Euryarchaeon Pyrococcus abyssi , 2001, Applied and Environmental Microbiology.

[38]  J. Baratti,et al.  Characterization of a thermostable esterase activity from the moderate thermophile Bacillus licheniformis. , 1999, Bioscience, biotechnology, and biochemistry.

[39]  W. Lee,et al.  Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process. , 2002, Bioresource technology.

[40]  G. Reed,et al.  Enzymes in Food Processing , 2001 .

[41]  A. Chandra,et al.  Purification and Characterization of alpha-Amylase from Bacillus licheniformis CUMC305. , 1983, Applied and environmental microbiology.

[42]  F. Priest,et al.  Characterization of a Thermostable α‐Amylase from Bacillus licheniformis NCIB 6346 , 1981 .

[43]  W. Mao,et al.  High production of alkaline protease byBacillus licheniformis in a fed-batch fermentation using a synthetic medium , 1992, Journal of Industrial Microbiology.

[44]  J. Baratti,et al.  Isolation and Characterization of Thermophilic Bacterial Strains with Inulinase Activity , 1987, Applied and environmental microbiology.

[45]  S. Bennett,et al.  Characterization of the 5' to 3' exonuclease associated with Thermus aquaticus DNA polymerase. , 1990, Nucleic acids research.

[46]  G. Antranikian,et al.  Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei , 1991, Archives of Microbiology.

[47]  M. Bhat,et al.  Cellulases and related enzymes in biotechnology. , 2000, Biotechnology advances.

[48]  장정수,et al.  Bacillus licheniformis , 2020, Definitions.

[49]  G. Antranikian,et al.  Highly active and thermostable amylases and pullulanases from various anaerobic thermophiles , 1987, Applied Microbiology and Biotechnology.

[50]  M. Bhat,et al.  Biochemical and catalytic properties of endo-1,4-β-xylanases from Thermomyces lanuginosus (wild and mutant strains) , 2002, Biotechnology Letters.

[51]  Comeau,et al.  Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. , 2000, Enzyme and microbial technology.

[52]  C. Anfinsen,et al.  The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. , 1993, The Journal of biological chemistry.

[53]  J. Frère,et al.  Purification and properties of three endo-β-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps☆ , 2000 .

[54]  A. Stams,et al.  Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. , 1993, European journal of biochemistry.

[55]  R. Daniel,et al.  Properties and stabilization of an extracellular α-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN 1: enzyme activity at 130°C , 1996 .

[56]  P. L. Manachini,et al.  Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis , 1998, Biotechnology Letters.

[57]  K. Stetter,et al.  Hyperthermophiles and their possible potential in biotechnology , 1998 .

[58]  G. Seenayya,et al.  β‐Amylase from Clostridium thermocellum SS8 ‐ a thermophilic, anaerobic, cellulolytic bacterium , 1994 .

[59]  J. Breccia,et al.  Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens , 1998 .

[60]  ANNE CLAYTON,et al.  Industrial Microbiology , 1968, Nature.

[61]  G. Antranikian,et al.  Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms , 1995, World journal of microbiology & biotechnology.

[62]  M. Rao,et al.  Molecular and Biotechnological Aspects of Microbial Proteases , 1998, Microbiology and Molecular Biology Reviews.

[63]  M. Rosa,et al.  Lipids of the Archaea: a new tool for bioelectronics , 1994 .

[64]  J. Jacquet [Food microbiology]. , 1980, Annales de la nutrition et de l'alimentation.

[65]  W. Baumeister,et al.  A hyperthermostable protease of the subtilisin family bound to the surface layer of the Archaeon Staphylothermus marinus , 1996, Current Biology.

[66]  D. Shoemaker,et al.  High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. , 1991, Gene.

[67]  P. Debeire,et al.  Purification and properties of the catalytic domain of the thermostable pullulanase type II from Thermococcus hydrothermalis , 2001, Biotechnology Letters.

[68]  S. Medda Production of Extracellular Thermostable α-Amylase by Bacillus licheniformis , 1980 .

[69]  K. Hellingwerf,et al.  Effect of nitrogen sources on the regulation of extracellular lipase production in Acinetobacter calcoaceticus strains , 1996, Biotechnology Letters.

[70]  R. K. Saxena,et al.  Bleach-stable, alkaline protease from Bacillus sp. , 1999, Biotechnology Letters.

[71]  N. Dencher,et al.  Dynamical properties of α-amylase in the folded and unfolded state: the role of thermal equilibrium fluctuations for conformational entropy and protein stabilisation , 2001 .

[72]  R. Nussinov,et al.  How do thermophilic proteins deal with heat? Cell Mol Life Sci , 2001 .

[73]  Liisa Viikari,et al.  Xylanases in bleaching: From an idea to the industry , 1994 .

[74]  Y. Murooka,et al.  Cloning of the pullulanase gene and overproduction of pullulanase in Escherichia coli and Klebsiella aerogenes , 1985, Applied and environmental microbiology.

[75]  J. Tkacz,et al.  The fungal cell wall as a drug target. , 1995, Trends in microbiology.

[76]  J. Ko,et al.  Purification and biochemical characterization of pullulanase type I from Thermus caldophilus GK-24. , 1996, FEMS microbiology letters.

[77]  H. Leemhuis,et al.  Properties and applications of starch-converting enzymes of the alpha-amylase family. , 2002, Journal of biotechnology.

[78]  R. Daniel,et al.  Cellulolytic and Hemicellulolytic Enzymes Functional above 100°C a , 1992 .

[79]  B. Saha,et al.  New thermostable α-amylase-like pullulanase from thermophilic Bacillus sp. 3183 , 1989 .

[80]  P. Blum,et al.  Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus , 1995, Journal of bacteriology.

[81]  N. Nwe,et al.  Production of fungal chitosan by solid substrate fermentation followed by enzymatic extraction , 2004, Biotechnology Letters.

[82]  William M. Fogarty,et al.  Microbial enzymes and biotechnology , 1983 .

[83]  D. Demirjian,et al.  Enzymes from extremophiles. , 2001, Current opinion in chemical biology.

[84]  W. M. Fogarty,et al.  Production and properties of the raw starch-digesting α-amylase of Bacillus sp. IMD 435. , 1999 .

[85]  Y. Takasaki Purifications and Enzymatic Properties of β-Amylase and Pullulanase from Bacillus cereus var. mycoides , 1978 .

[86]  J. Hall,et al.  Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. , 1995, The Biochemical journal.

[87]  J. Rhee,et al.  Production and partial purification of a lipase from Pseudomonas putida 3SK , 1993 .

[88]  Hitesh Kumar,et al.  Modern Concepts of Microbiology , 1999 .

[89]  H. A. Erlich,et al.  Specific DNA amplification , 1988, Nature.

[90]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[91]  K. Unger,et al.  Calculation of the molecular masses of two newly synthesized thermostable enzymes isolated from thermophilic microorganisms. , 1995, Journal of chromatography. B, Biomedical applications.

[92]  Gessesse Purification and properties of two thermostable alkaline xylanases from an alkaliphilic bacillus sp , 1998, Applied and environmental microbiology.

[93]  S. Rakshit Utilization of starch industry wastes , 1998 .

[94]  G. Antranikian,et al.  Properties of extremely thermostable proteases from anaerobic hyperthermophilic bacteria , 1991, Applied Microbiology and Biotechnology.

[95]  B. Mattiasson,et al.  Purification and characterization of cellulases produced by two Bacillus strains. , 2000, Journal of biotechnology.

[96]  P Béguin,et al.  Molecular biology of cellulose degradation. , 1990, Annual review of microbiology.

[97]  B. Johnvesly,et al.  Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium , 2001 .

[98]  C. Anfinsen,et al.  Alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. , 1993, The Journal of biological chemistry.

[99]  I. Lasa,et al.  Thermophilic enzymes and their biotechnological potential. , 1993, Microbiologia.

[100]  M. Wakayama,et al.  Purification and characterization of thermostable beta-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost , 1994, Applied and environmental microbiology.

[101]  M. Vihinen,et al.  Characterization of a thermostable Bacillus stearothermophilus alpha‐amylase , 1990, Biotechnology and applied biochemistry.

[102]  A. Kozioł,et al.  Iteration model of starch hydrolysis by amylolytic enzymes. , 2001, Biotechnology and bioengineering.

[103]  M. Basri,et al.  Thermostable extracellular protease of Bacillus stearothermophilus: factors affecting its production , 1994, World journal of microbiology & biotechnology.

[104]  L. M. Smith,et al.  Bst DNA polymerase permits rapid sequence analysis from nanogram amounts of template. , 1991, BioTechniques.

[105]  F. Franks Protein Biotechnology: Isolation, Characterization, and Stabilization , 1993 .

[106]  M. Basri,et al.  Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophilus F1 , 1994, Applied Microbiology and Biotechnology.

[107]  R. Sani,et al.  THERMOSTABLE ALKALINE PROTEASE FROM BACILLUS BREVIS AND ITS CHARACTERIZATION AS A LAUNDRY DETERGENT ADDITIVE , 1999 .

[108]  N. Kulkarni,et al.  A novel alkaline, thermostable, protease-free lipase from Pseudomonas sp. , 1999, Biotechnology Letters.

[109]  M. Rossi,et al.  Glycosyl hydrolases from hyperthermophiles , 1997, Extremophiles.

[110]  Bok Jd,et al.  Cellulase and xylanase systems of Thermotoga neapolitana. , 1994 .

[111]  E. Conway de Macario,et al.  Stressors, stress and survival: overview. , 2000, Frontiers in bioscience : a journal and virtual library.

[112]  Hideo Noda,et al.  Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase , 1999 .

[113]  J. Trela,et al.  Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus , 1976, Journal of bacteriology.

[114]  V. Zverlov,et al.  Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile 'Anaerocellum thermophilum' with separate glycosyl hydrolase family 9 and 48 catalytic domains. , 1998, Microbiology.

[115]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[116]  J. Kristjánsson,et al.  An Extremely Thermostable Cellulase from the Thermophilic Eubacterium Rhodothermus marinus , 1996 .

[117]  W. Thilly,et al.  Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and vent DNA polymerases. , 1991, PCR methods and applications.

[118]  J. Yoon,et al.  Rapid and simple purification of a novel extracellular β-amylase from Bacillus sp. , 2001, Biotechnology Letters.

[119]  P. R. Reddy,et al.  Purification and characterization of thermostable β-amylase and pullulanase from high-yielding Clostridium thermosulfurogenes SV2 , 1997 .

[120]  S. Khanna,et al.  Enhanced production, purification and characterisation of a novel cellulase-poor thermostable, alkalitolerant xylanase from Bacillus circulans AB 16 , 2000 .

[121]  D. Yernool,et al.  Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. , 1998, Applied and environmental microbiology.

[122]  K. Ajisaka,et al.  Isolation and characterization of thermostable chitinases from Bacillus licheniformis X-7u. , 1991, Biochimica et biophysica acta.

[123]  C. Mitchinson,et al.  Enzymes involved in the processing of starch to sugars , 1997 .

[124]  Lori A. Eriksson,et al.  Applications of enzyme technology in the paper industry , 1998 .

[125]  G. Lunt,et al.  The Archaebacteria : biochemistry and biotechnology , 1992 .

[126]  B. Saha Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum , 2002 .

[127]  D. Grogan Evidence that β-Galactosidase of Sulfolobus solfataricus Is Only One of Several Activities of a Thermostable β-d-Glycosidase , 1991 .

[128]  A. Gessesse,et al.  A highly thermostable amylase from a newly isolated thermophilic Bacillus sp. WN11 , 1999 .

[129]  G. Antranikian,et al.  Keratin Degradation by Fervidobacterium pennavorans, a Novel Thermophilic Anaerobic Species of the Order Thermotogales , 1996, Applied and environmental microbiology.

[130]  A. Klibanov Immobilized Enzymes and Cells as Practical Catalysts , 1983, Science.

[131]  D. Gelfand,et al.  Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. , 1991, Biochemistry.

[132]  S. Kocabıyık,et al.  Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR). , 2002, Bioresource technology.

[133]  Jeffrey H. Miller,et al.  The sequence of a subtilisin‐type protease (aerolysin) from the hyperthermophilic archaeum Pyrobaculum aerophilum reveals sites important to thermostability , 1994, Protein science : a publication of the Protein Society.

[134]  R. Herbert,et al.  Molecular Biology and Biotechnology of Extremophiles , 1992 .

[135]  F. Perler,et al.  Thermostable DNA polymerases. , 1996, Advances in protein chemistry.

[136]  V. Ivanova,et al.  Purification and characterization of a thermostable alpha-amylase from Bacillus licheniformis , 1993 .

[137]  B. Saha,et al.  Purification and characterization of a novel thermostable beta-amylase from Clostridium thermosulphurogenes. , 1988, The Biochemical journal.

[138]  F. Duchiron,et al.  Purification and properties of a thermoactive and thermostable pullulanase from Thermococcushydrothermalis, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent , 1998, Applied Microbiology and Biotechnology.

[139]  J. Olsen,et al.  Physicochemical properties of a purified alpha-amylase from the thermophilic fungus Thermomyces lanuginosus , 1992 .

[140]  R. Huber,et al.  Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment , 1995, Archives of Microbiology.

[141]  M. Wakayama,et al.  Purification and Characterization of Three Thermostable Endochitinases of a Noble Bacillus Strain, MH-1, Isolated from Chitin-Containing Compost , 1998, Applied and Environmental Microbiology.

[142]  G. Antranikian,et al.  Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a newFervidobacterium species , 1994, Applied Microbiology and Biotechnology.

[143]  Y. Kawarabayasi,et al.  Novel substrate specificity of a membrane‐bound β‐glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii , 2000, FEBS Letters.

[144]  K. Vorlop,et al.  Conversion of glycerol to 1,3-propanediol by a newly isolated thermophilic strain , 2001, Biotechnology Letters.

[145]  R. K. Saxena,et al.  A hyper-thermostable, alkaline lipase from Pseudomonas sp. with the property of thermal activation , 2004, Biotechnology Letters.

[146]  S. Fujiwara,et al.  The world of archaea: genome analysis, evolution and thermostable enzymes. , 1996, Gene.

[147]  W. Liebl,et al.  Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials , 1995, Applied and environmental microbiology.

[148]  T. Imanaka,et al.  Cloning and nucleotide sequence of the highly thermostable neutral protease gene from Bacillus stearothermophilus. , 1988, Journal of general microbiology.

[149]  D. Clark,et al.  Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. , 1998, Biotechnology and bioengineering.

[150]  B. Mikami,et al.  Comparison of degradation abilities of α- and β-amylases on raw starch granules , 2000 .

[151]  K. Stetter Extremophiles and their adaptation to hot environments , 1999, FEBS letters.

[152]  J. Lakowicz,et al.  The β-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: enzyme activity and conformational dynamics at temperatures above 100°C , 1999 .

[153]  E. Mathur,et al.  An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1-->3),(1-->4)-beta-D-glucans and cellulose. , 1999, Journal of bacteriology.

[154]  Charles W. J. Chin,et al.  Cloning of the xynB Gene fromDictyoglomus thermophilum Rt46B.1 and Action of the Gene Product on Kraft Pulp , 1998, Applied and Environmental Microbiology.

[155]  A. Chandra,et al.  Purification and Characterization of α-Amylase from Bacillus licheniformis CUMC305 , 1983 .

[156]  C Colson,et al.  Bacterial lipases. , 1994, FEMS microbiology reviews.

[157]  Herbert Märkl,et al.  Fermentation of extremophilic microorganisms , 1996 .

[158]  C. Vieille,et al.  Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme , 1997, Applied and environmental microbiology.

[159]  R.F.H. Lindner W.A. Dekker,et al.  Bio utilization of Lignocellulose waste materials: a review , 1979 .

[160]  S. W. Kim,et al.  Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs , 2002, Applied Microbiology and Biotechnology.

[161]  Miyoko Hashida,et al.  Protein Engineering of New Industrial Amylases , 2000 .

[162]  D. Grogan Evidence that beta-Galactosidase of Sulfolobus solfataricus Is Only One of Several Activities of a Thermostable beta-d-Glycosidase. , 1991, Applied and environmental microbiology.

[163]  M. Lämsä,et al.  Lipase-catalyzed transesterification of rapeseed oil and 2-ethyl-1-hexanol , 1994 .

[164]  C. R. Soccol,et al.  The realm of microbial lipases in biotechnology , 1999, Biotechnology and applied biochemistry.

[165]  P. L. Manachini,et al.  Thermostable alkaline protease produced by Bacillus thermoruber — a new species of Bacillus , 1988, Applied Microbiology and Biotechnology.

[166]  B. Saha,et al.  Purification and characterization of a highly thermostable novel pullulanase from Clostridium thermohydrosulfuricum. , 1988, The Biochemical journal.

[167]  K. Mullis,et al.  Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. , 1987, Methods in enzymology.

[168]  K. Nand,et al.  Production of thermostable cellulase-free xylanase by Clostridium absonum CFR-702 , 2000 .

[169]  Ravi Kumar M.N.V. A REVIEW OF CHITIN AND CHITOSAN APPLICATIONS , 2000 .

[170]  C. Bucke,et al.  Oligosaccharide synthesis by reversed catalysis using α-amylase from Bacillus licheniformis , 2000 .

[171]  Å. Manelius,et al.  Thermophiles and fermentation technology , 1997 .

[172]  Y. Takasaki Studies on amylases from Bacillus effective for production of maltose. I. Productions and utilizations of .BETA.-amylase and pullulanase from Bacillus cereus var. mycoides. , 1976 .

[173]  M. Rossi,et al.  Exo‐glucosidase activity and substrate specificity of the beta‐glycosidase isolated from the extreme thermophile Sulfolobus solfataricus , 1993, Biotechnology and applied biochemistry.

[174]  G. Antranikian,et al.  Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil , 1997, Applied Microbiology and Biotechnology.

[175]  K. Andries,et al.  Comparative study of starch degradation and amylase production by ascomycetous yeast species , 1984 .

[176]  Aguilar,et al.  Purification and characterization of an extracellular alpha-amylase produced by Lactobacillus manihotivorans LMG 18010(T), an amylolytic lactic acid bacterium. , 2000, Enzyme and microbial technology.

[177]  J. Kristjánsson Thermophilic organisms as sources of thermostable enzymes , 1989 .

[178]  B. Ahring,et al.  Application of thermostable xylanase of Dictyoglomus sp. in enzymatic treatment of kraft pulps , 1994, Applied Microbiology and Biotechnology.

[179]  A. Bahrami,et al.  Biodegradation of dibenzothiophene by thermophilic bacteria , 2001, Biotechnology Letters.

[180]  Zbigniew Dauter,et al.  A common protein fold and similar active site in two distinct families of β-glycanases , 1996, Nature Structural Biology.

[181]  W. Liebl,et al.  Two Extremely Thermostable Xylanases of the Hyperthermophilic Bacterium Thermotoga maritima MSB8 , 1995, Applied and environmental microbiology.

[182]  G. Seenayya,et al.  Enhanced production of thermostable β-amylase and pullulanase in the presence of surfactants by Clostridium thermosulfurogenes SV2 , 1999 .

[183]  W. Patterson Environmentally friendly , 1996, Nature.

[184]  C. Vieille,et al.  Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus , 1997 .

[185]  H. Gilbert,et al.  Family-10 and Family-11 xylanases differ in their capacity to enhance the bleachability of hardwood and softwood paper pulps , 1997, Applied Microbiology and Biotechnology.

[186]  P. Christakopoulos,et al.  Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus : Characterization of two isozymes , 1998 .

[187]  P. Åman,et al.  Preparation and characterisation of linear dextrins and their use as substrates in in vitro studies of starch branching enzymes , 2002 .

[188]  R. Daniel,et al.  A highly stable pullulanase from Thermus aquaticus YT-1 , 1986 .

[189]  R. Nussinov,et al.  How do thermophilic proteins deal with heat? , 2001, Cellular and Molecular Life Sciences CMLS.

[190]  K. Dahlke An Enzymatic Process for the Physical Refining of Seed Oils , 1998 .

[191]  G. Antranikian,et al.  Extremophiles as a source of novel enzymes for industrial application , 1999, Applied Microbiology and Biotechnology.

[192]  Š. Janeček,et al.  Thermophilic archaeal amylolytic enzymes , 2000 .

[193]  D. Saul,et al.  Sequence and expression of a xylanase gene from the hyperthermophile Thermotoga sp. strain FjSS3-B.1 and characterization of the recombinant enzyme and its activity on kraft pulp , 1995, Applied and environmental microbiology.

[194]  B. Frey,et al.  Demonstration of the Expand TM PCR System's Greater Fidelity and Higher Yields with a lacI-based PCR Fidelity Assay , 2000 .

[195]  N. Stamford,et al.  Production and characterization of a thermostable alpha-amylase from Nocardiopsis sp. endophyte of yam bean. , 2001, Bioresource technology.

[196]  R. Daniel,et al.  Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1. Purification and properties. , 1991, Biochemical Journal.

[197]  T. Kudo,et al.  Purification and characterization of α-amylase from hyperthermophilic archaeon Thermococcus profundus, which hydrolyzes both α-1,4 and α-1,6 glucosidic linkages , 1998 .

[198]  T. Harada,et al.  Immunological Study of Pullulanase from Klebsiella Strains and the Occurrence of this Enzyme in the Enterobacteriaceae , 1979 .

[199]  P. Nigam,et al.  Thermostable, alkalophilic and cellulase free xylanase production by Thermoactinomyces thalophilus subgroup C. , 2001, Enzyme and microbial technology.

[200]  Arifoglu,et al.  Avicel-adsorbable endoglucanase production by the thermophilic fungus Scytalidium thermophilum type culture Torula thermophila. , 2000, Enzyme and microbial technology.

[201]  N. S. Dosanjh,et al.  A novel thermostable lipase from a thermophilic Bacillus sp.: characterization and esterification studies , 1998, Biotechnology Letters.

[202]  Y. Pyun,et al.  Isolation and characterization of a thermophilic lipase from bacillus thermoleovorans ID-1. , 1999, FEMS microbiology letters.

[203]  M. Reetz,et al.  Microbial lipases form versatile tools for biotechnology. , 1998, Trends in biotechnology.

[204]  C. Vieille,et al.  Thermozymes: biotechnology and structure–function relationships , 1998, Extremophiles.

[205]  J. Lindsay Is thermophily a transferrable property in bacteria? , 1995, Critical reviews in microbiology.

[206]  W. Suntornsuk,et al.  Fungal chitosan production on food processing by-products , 2002 .

[207]  S. Soni,et al.  Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1 , 2002 .

[208]  M Rossi,et al.  Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. , 1998, The Biochemical journal.

[209]  Y. Abdel-Fattah Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design , 2002, Biotechnology Letters.

[210]  Lubbert Dijkhuizen,et al.  Properties and applications of starch-converting enzymes of the α-amylase family , 2002 .

[211]  R. Daniel,et al.  An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. , 1991, The Biochemical journal.

[212]  G. Barbier,et al.  Thermostable amylolytic enzymes of thermophilic microorganisms from deep-sea hydrothermal vents , 1997 .

[213]  B. Bhushan,et al.  Isolation, purification and properties of a thermostable chitinase from an alkalophilic Bacillus sp. BG-11 , 1998, Biotechnology Letters.

[214]  M. N. R. Kumar A review of chitin and chitosan applications , 2000 .

[215]  G. Antranikian,et al.  Pullulanase Type I from Fervidobacterium pennavorans Ven5: Cloning, Sequencing, and Expression of the Gene and Biochemical Characterization of the Recombinant Enzyme , 1999, Applied and Environmental Microbiology.

[216]  M. Healy,et al.  Bioconversion of marine crustacean shell waste , 1994 .

[217]  J. Braman,et al.  PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. , 1996, Nucleic acids research.

[218]  K. Mullis,et al.  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. , 1988, Science.

[219]  N. Foulkes,et al.  Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. , 1989, Nucleic acids research.

[220]  黒川 洋一,et al.  好熱菌Bacillus stearothermophilusのアラニンラセマーゼの反応機構 : 酵素 , 1996 .

[221]  M. S. Duchiron,et al.  Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. , 2000, Enzyme and microbial technology.

[222]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[223]  K. Horikoshi,et al.  Production of extremely thermostable alkaline protease from Bacillus sp. no. AH-101 , 1989, Applied Microbiology and Biotechnology.

[224]  K. Schleifer,et al.  Cloning and characterization of β-galactoside and β-glucoside hydrolysing enzymes of Thermotoga maritima , 1993 .

[225]  Y. Shimada,et al.  Use of thermostable Fusarium heterosporum lipase for production of structured lipid containing oleic and palmitic acids in organic solvent-free system , 2001 .

[226]  R. Dekker Bioconversion of hemicellulose: Aspects of hemicellulase production by Trichoderma reesei QM 9414 and enzymic saccharification of hemicellulose , 1983, Biotechnology and bioengineering.

[227]  H. Verachtert,et al.  Production of extracellular debranching activity by amylolytic yeasts , 2004, Biotechnology Letters.

[228]  K. Ishikawa,et al.  Hyperthermostable Endoglucanase from Pyrococcus horikoshii , 2002, Applied and Environmental Microbiology.

[229]  J. Eichler,et al.  Biotechnological uses of archaeal extremozymes. , 2001, Biotechnology advances.

[230]  Gorodetskiĭ Si,et al.  Isolation and properties of DNA polymerase from the extreme thermophilic bacterium Thermus ruber , 1982 .

[231]  S. Petersen,et al.  Lipases : their structure, biochemistry and application , 1994 .

[232]  R. Ray,et al.  Microbial β-Amylases: Biosynthesis, Characteristics, and Industrial Applications , 1996 .

[233]  D. Poncelet,et al.  Immobilization of cells for application in the food industry. , 1994, Critical reviews in biotechnology.

[234]  T. Nanmori,et al.  Thermostable, Raw-Starch-Digesting Amylase from Bacillus stearothermophilus , 1989, Applied and environmental microbiology.

[235]  A. Chandra,et al.  New strains of Bacillus licheniformis and Bacillus coagulans producing thermostable alpha-amylase active at alkaline pH. , 1980, The Journal of applied bacteriology.

[236]  K. Miyamoto,et al.  Expression in Escherichia coli of a gene encoding a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. , 1995, Bioscience, biotechnology, and biochemistry.

[237]  S. Hirano Chitin biotechnology applications. , 1996, Biotechnology annual review.

[238]  Ki-Teak Lee,et al.  Lipase-catalyzed acidolysis of perilla oil with caprylic acid to produce structured lipids , 2002 .

[239]  J. Frère,et al.  An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: Structural basis and molecular study , 2008, Protein science : a publication of the Protein Society.

[240]  M. Palladino,et al.  Introduction to Biotechnology , 1987 .

[241]  Kyoichi Saito,et al.  High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes , 2002 .

[242]  I. Chet,et al.  The molecular biology of chitin digestion. , 1998, Current opinion in biotechnology.