Performance of the WRF model in simulating convective rainfall events in the humid subtropical monsoon climate region—Poyang Lake basin

[1]  P. Mujumdar,et al.  A Flood Forecasting Framework Coupling a High Resolution WRF Ensemble With an Urban Hydrologic Model , 2022, Frontiers in Earth Science.

[2]  Jagabandhu Panda,et al.  Role of PBL and Microphysical Parameterizations During WRF Simulated Monsoonal Heavy Rainfall Episodes Over Mumbai , 2021, Pure and Applied Geophysics.

[3]  R. Rasmussen,et al.  WRF Gray‐Zone Simulations of Precipitation Over the Middle‐East and the UAE: Impacts of Physical Parameterizations and Resolution , 2021, Journal of Geophysical Research: Atmospheres.

[4]  O. Pauluis,et al.  Impact of Planetary Boundary Layer and Cloud Microphysics on the Sensitivity of Monsoon Precipitation Using a Gray‐Zone Regional Model , 2021, Earth and Space Science.

[5]  M. Yılmaz,et al.  Evaluating the performance of a WRF initial and physics ensemble over Eastern Black Sea and Mediterranean regions in Turkey , 2021 .

[6]  Zhongbo Yu,et al.  Performance of the WRF model in simulating intense precipitation events over the Hanjiang River Basin, China – A multi-physics ensemble approach , 2021 .

[7]  Xi Chen,et al.  Impact of different microphysics and cumulus parameterizations in WRF for heavy rainfall simulations in the central segment of the Tianshan Mountains, China , 2020 .

[8]  Xiaoling Chen,et al.  An investigation of the hydrological influence on the distribution and transition of wetland cover in a complex lake–floodplain system using time-series remote sensing and hydrodynamic simulation , 2020 .

[9]  S. Karmakar,et al.  Tide-rainfall flood quotient: an incisive measure of comprehending a region’s response to storm-tide and pluvial flooding , 2020, Environmental Research Letters.

[10]  M. H. Afshar,et al.  Climate change impact assessment on mild and extreme drought events using copulas over Ankara, Turkey , 2020, Theoretical and Applied Climatology.

[11]  Koray K. Yilmaz,et al.  Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography , 2020 .

[12]  M. L. Kurnaz,et al.  Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data , 2020, Journal of Climate.

[13]  S. Karmakar,et al.  Performance evaluation of WRF for extreme flood forecasts in a coastal urban environment , 2019, Atmospheric Research.

[14]  Dawei Han,et al.  Assessment of simulated soil moisture from WRF Noah, Noah-MP, and CLM land surface schemes for landslide hazard application , 2019, Hydrology and Earth System Sciences.

[15]  E. Avolio,et al.  WRF simulations for a heavy rainfall event in southern Italy: Verification and sensitivity tests , 2018, Atmospheric Research.

[16]  A. Islam,et al.  Evaluation of Microphysics and Cumulus Schemes of WRF for Forecasting of Heavy Monsoon Rainfall over the Southeastern Hilly Region of Bangladesh , 2018, Pure and Applied Geophysics.

[17]  Michele Calvello,et al.  Territorial early warning systems for rainfall-induced landslides , 2018 .

[18]  K. S. Singh,et al.  Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes , 2018 .

[19]  P. Mujumdar,et al.  Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin , 2018 .

[20]  Xiaoling Chen,et al.  Increased Vegetation Greenness Aggravates Water Conflicts during Lasting and Intensifying Drought in the Poyang Lake Watershed, China , 2018 .

[21]  Hyo-Jong Song,et al.  The Advantages of Hybrid 4DEnVar in the Context of the Forecast Sensitivity to Initial Conditions , 2017 .

[22]  P. Nastos,et al.  Evaluation of the AWR-WRF model configuration at high resolution over the domain of Greece , 2017, Atmospheric Research.

[23]  A. Karipot,et al.  Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley , 2017 .

[24]  Zhigang Chu,et al.  A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China , 2017 .

[25]  Danlian Huang,et al.  Impact of different cumulus convective parameterization schemes on the simulation of precipitation over China , 2017 .

[26]  Philip Amburn,et al.  Defining the Influence of Horizontal Grid Spacing on Ensemble Uncertainty within a Regional Modeling Framework , 2016 .

[27]  Zhiyong Wu,et al.  Evaluation of Optimized WRF Precipitation Forecast over a Complex Topography Region during Flood Season , 2016 .

[28]  Faisal Hossain,et al.  Assessment of the weather research and forecasting model generalized parameterization schemes for advancement of precipitation forecasting in monsoon‐driven river basins , 2016 .

[29]  M. Verlaan,et al.  A global reanalysis of storm surges and extreme sea levels , 2016, Nature Communications.

[30]  Weimin Que,et al.  Intercomparison of different physics schemes in the WRF model over the Asian summer monsoon region , 2016 .

[31]  A. Mazzino,et al.  Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches , 2015 .

[32]  Laurent Z. X. Li,et al.  Extreme Precipitation Indices over China in CMIP5 Models. Part I: Model Evaluation , 2015 .

[33]  Chaoshun Liu,et al.  Evaluation of WRF microphysics and cumulus parameterization schemes in simulating a heavy rainfall event over Yangtze River delta , 2015, SPIE Optical Engineering + Applications.

[34]  Antonio Parodi,et al.  Sensitivity of Precipitation Statistics to Resolution, Microphysics, and Convective Parameterization: A Case Study with the High-Resolution WRF Climate Model over Europe , 2015 .

[35]  Wei Gong,et al.  Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area , 2015 .

[36]  R. Salgado,et al.  Numerical modelling of heavy rainfall event over Madeira Island in Portugal: sensitivity to different micro physical processes , 2015 .

[37]  Song‐You Hong,et al.  Simulation of the Summer Monsoon Rainfall over East Asia Using the NCEP GFS Cumulus Parameterization at Different Horizontal Resolutions , 2014 .

[38]  L. Luo,et al.  WRF Model Sensitivity to Land Surface Model and Cumulus Parameterization under Short-Term Climate Extremes over the Southern Great Plains of the United States , 2014 .

[39]  A. Satyanarayana,et al.  Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility — Case study , 2014 .

[40]  Jiming Jin,et al.  Improvements in WRF simulation skills of southeastern United States summer rainfall: physical parameterization and horizontal resolution , 2014, Climate Dynamics.

[41]  C. Kummerow,et al.  Impacts of a priori databases using six WRF microphysics schemes on passive microwave rainfall retrievals , 2013 .

[42]  D. Melas,et al.  Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes. Effect on large-scale processes , 2013 .

[43]  Klemens Hocke,et al.  Influence of microphysical schemes on atmospheric water in the Weather Research and Forecasting model , 2013 .

[44]  N. Stoeckl,et al.  Applying econometric techniques to hydrological problems in a large basin: quantifying the rainfall–discharge relationship in the Burdekin, Queensland, Australia , 2013 .

[45]  Martyn P. Clark,et al.  Importance of Regional Climate Model Grid Spacing for the Simulation of Heavy Precipitation in the Colorado Headwaters , 2013 .

[46]  Quan J. Wang,et al.  Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose , 2013 .

[47]  U. C. Mohanty,et al.  Numerical simulation of severe local storms over east India using WRF-NMM mesoscale model , 2012 .

[48]  José Martínez-Fernández,et al.  Validation of the SMOS L2 Soil Moisture Data in the REMEDHUS Network (Spain) , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Jimy Dudhia,et al.  Evaluation of WRF Parameterizations for Climate Studies over Southern Spain Using a Multistep Regionalization , 2011 .

[50]  J. Dudhia,et al.  High resolution coupled climate-runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate , 2011 .

[51]  Tae-Young Lee,et al.  Role of convective parameterization in simulations of heavy precipitation systems at grey-zone resolutions — case studies , 2011 .

[52]  Sophie Bastin,et al.  Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF , 2011 .

[53]  Q. Schiermeier Increased flood risk linked to global warming , 2011, Nature.

[54]  A. Molthan Evaluating the Performance of Single and Double Moment Microphysics Schemes During a Synoptic-Scale Snowfall Event , 2011 .

[55]  Xin‐Zhong Liang,et al.  Observed Diurnal Cycle Climatology of Planetary Boundary Layer Height , 2010 .

[56]  S. J. Weiss,et al.  Assessing Advances in the Assimilation of Radar Data and Other Mesoscale Observations within a Collaborative Forecasting-Research Environment , 2010 .

[57]  Donald W. Hillger,et al.  An Evaluation of Five ARW-WRF Microphysics Schemes Using Synthetic GOES Imagery for an Atmospheric River Event Affecting the California Coast , 2010 .

[58]  Yang Zhang,et al.  An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options , 2010 .

[59]  Dieter Scherer,et al.  WRF simulation of a precipitation event over the Tibetan Plateau, China - an assessment using remote sensing and ground observations , 2010 .

[60]  Song-You Hong,et al.  Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models , 2010 .

[61]  Xing Yu,et al.  Role of convective parameterization in simulations of a convection band at grey-zone resolutions , 2010 .

[62]  S. J. Weiss,et al.  Next-Day Convection-Allowing WRF Model Guidance: A Second Look at 2-km versus 4-km Grid Spacing , 2009 .

[63]  Ji-Woo Lee,et al.  Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea , 2009 .

[64]  Z. Pu,et al.  Sensitivity of Numerical Simulations of the Early Rapid Intensification of Hurricane Emily to Cumulus Parameterization Schemes in Different Model Horizontal Resolutions , 2009 .

[65]  G. Thompson,et al.  Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes , 2009 .

[66]  E. Athanasopoulou,et al.  The Role of Planetary Boundary-Layer Parameterizations in the Air Quality of an Urban Area with Complex Topography , 2009 .

[67]  Z. Pu,et al.  Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations , 2008 .

[68]  Andrea Rinaldo,et al.  On the impact of rainfall patterns on the hydrologic response , 2008 .

[69]  S. J. Weiss,et al.  Some Practical Considerations Regarding Horizontal Resolution in the First Generation of Operational Convection-Allowing NWP , 2008 .

[70]  Wei Zhao,et al.  THE HURRICANE RAINBAND AND INTENSITY CHANGE EXPERIMENT Observations and Modeling of Hurricanes Katrina, Ophelia, and Rita , 2006 .

[71]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[72]  Song‐You Hong,et al.  The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) , 2006 .

[73]  Xuebin Zhang,et al.  Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China , 2005 .

[74]  Kevin W. Manning,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis , 2004 .

[75]  G. Grell,et al.  A generalized approach to parameterizing convection combining ensemble and data assimilation techniques , 2002 .

[76]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[77]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[78]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[79]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[80]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[81]  R. Garland,et al.  Sensitivity of meteorological variables on planetary boundary layer parameterization schemes in the WRF-ARW model , 2021 .

[82]  Xiaoling Chen,et al.  Projection of Reference Crop Evapotranspiration under Future Climate Change in Poyang Lake Watershed, China , 2021 .

[83]  L. Qi,et al.  Evaluation of the WRF physical parameterisations for Typhoon rainstorm simulation in southeast coast of China , 2021 .

[84]  Jimy Dudhia,et al.  A Description of the Advanced Research WRF Model Version 4 , 2019 .

[85]  T. Flesch,et al.  Verification of the WRF model for simulating heavy precipitation in Alberta , 2014 .

[86]  M. Mannan,et al.  Application of NWP Model in Prediction of Heavy Rainfall in Bangladesh , 2013 .

[87]  Zhang,et al.  Numerical Simulation on a Heavy Rainfall Event over Jiangxi Province , 2012 .

[88]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[89]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[90]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[91]  Zaviša I. Janić Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model , 2001 .

[92]  Petra Seibert,et al.  Review and intercomparison of operational methods for the determination of the mixing height , 2000 .

[93]  K. Emanuel,et al.  The Representation of Cumulus Convection in Numerical Models , 1993 .

[94]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[95]  R. F. Brown,et al.  PERFORMANCE EVALUATION , 2019, ISO 22301:2019 and business continuity management – Understand how to plan, implement and enhance a business continuity management system (BCMS).