暂无分享,去创建一个
[1] Steven Kay,et al. A Fast and Accurate Single Frequency Estimator , 2022 .
[2] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[3] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[4] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[5] Sudipto Guha,et al. Near-optimal sparse fourier representations via sampling , 2002, STOC '02.
[6] Piotr Indyk,et al. Nearly optimal sparse fourier transform , 2012, STOC '12.
[7] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[8] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[9] Piotr Indyk,et al. Sample-optimal average-case sparse Fourier Transform in two dimensions , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[10] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[11] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] Thierry Blu,et al. Extrapolation and Interpolation) , 2022 .
[14] A.C. Gilbert,et al. A Tutorial on Fast Fourier Sampling , 2008, IEEE Signal Processing Magazine.
[15] M. Vetterli,et al. Sparse Sampling of Signal Innovations , 2008, IEEE Signal Processing Magazine.
[16] Martin J. Wainwright,et al. Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting , 2009, IEEE Trans. Inf. Theory.
[17] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[18] Joel A. Tropp,et al. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.
[19] Justin K. Romberg,et al. Restricted Isometries for Partial Random Circulant Matrices , 2010, ArXiv.
[20] Thierry Blu,et al. Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..
[21] Kannan Ramchandran,et al. Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.
[22] V. Pisarenko. The Retrieval of Harmonics from a Covariance Function , 1973 .
[23] Yonina C. Eldar,et al. From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.
[24] Steven A. Tretter,et al. Estimating the frequency of a noisy sinusoid by linear regression , 1985, IEEE Trans. Inf. Theory.