Poly(vinyl alcohol) Rehydratable Photonic Crystal Sensor Materials

We developed a new photonic crystal hydrogel material based on the biocompatible polymer poly (vinyl alcohol) (PVA), which can be reversibly dehydrated and rehydrated, without the use of additional fillers, while retaining the diffraction and swelling properties of polymerized crystalline colloidal arrays (PCCA). This chemically modified PVA hydrogel photonic crystal efficiently diffracts light from the embedded crystalline colloidal array. This diffraction optically reports on volume changes occurring in the hydrogel by shifts in the wavelength of the diffracted light. We fabricated a pH sensor, which demonstrates a 350 nm wavelength shift between pH values of 3.3 and 8.5. We have also fabricated a Pb(+2) sensor, in which pendant crown ether groups bind lead ions. Immobilization of the ions within the hydrogel increases the osmotic pressure due to the formation of a Donnan potential, swelling the hydrogel and shifting the observed diffraction in proportion to the concentration of bound ions. The sensing responses of rehydrated PVA pH and Pb(+2) sensors were similar to that before drying. This reversibility of rehydration enables storage of these hydrogel photonic crystal sensors in the dry state, which makes them much more useful for commercial applications.

[1]  Sandra Downes,et al.  Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. , 2002, Journal of biomedical materials research.

[2]  B. Muller,et al.  Nelfilcon A, a New Material for Contact Lenses , 1999, CHIMIA.

[3]  Photoresponsive azobenzene photonic crystals , 2004 .

[4]  S. Asher,et al.  Characterization of Optical Diffraction and Crystal Structure in Monodisperse Polystyrene Colloids , 1984 .

[5]  F. Auriemma,et al.  Structure and Properties of Poly(vinyl alcohol) Hydrogels Obtained by Freeze/Thaw Techniques , 2005 .

[6]  V. Giménez,et al.  Unsaturated modified poly(vinyl alcohol). Crosslinking through double bonds , 1999 .

[7]  A. Guiseppi-Elie,et al.  DESIGN AND CHARACTERIZATION OF A GALACTOSE BIOSENSOR USING A NOVEL POLYPYRROLE-HYDROGEL COMPOSITE MEMBRANE , 2002 .

[8]  Sanford A. Asher,et al.  Dynamical Bragg diffraction from crystalline colloidal arrays , 1989 .

[9]  T. Nonaka,et al.  Crosslinking of poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membranes with glutaraldehyde and permeation of solutes through the membranes , 1996 .

[10]  S. Asher,et al.  Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. , 2004, Clinical chemistry.

[11]  Sanford A. Asher,et al.  Photonic Crystal Chemical Sensors: pH and Ionic Strength , 2000 .

[12]  S. Asher,et al.  Acetylcholinesterase-based organophosphate nerve agent sensing photonic crystal. , 2005, Analytical chemistry.

[13]  Toyoichi Tanaka,et al.  Multiple phases of polymer gels , 1992, Nature.

[14]  S. Asher,et al.  Fast responsive crystalline colloidal array photonic crystal glucose sensors. , 2006, Analytical chemistry.

[15]  Jennifer L West,et al.  Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. , 2002, Biomaterials.

[16]  Y. Ikada,et al.  Development of artificial articular cartilage , 2000, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[17]  Photonic crystal devices , 2004 .

[18]  S. Stauffer,et al.  Poly (vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing , 1992 .

[19]  N. Peppas,et al.  Controlled release from poly ( vinyl alcohol ) gels prepared by freezing-thawing processes , 1992 .

[20]  Elasticity of swollen polyvinyl alcohol and poly(vinyl acetate) networks , 1980 .

[21]  S. Asher,et al.  Development of an intelligent polymerized crystalline colloidal array colorimetric reagent. , 2001, Analytical chemistry.

[22]  Justin T. Baca,et al.  Progress in developing polymerized crystalline colloidal array sensors for point-of-care detection of myocardial ischemia. , 2008, The Analyst.

[23]  W. Ford,et al.  Diffraction of Visible Light by Ordered Monodisperse Silica−Poly(methyl acrylate) Composite Films , 1996 .

[24]  Kristi S. Anseth,et al.  Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers , 2000 .

[25]  Nikolaos A. Peppas,et al.  Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics , 1997 .

[26]  Ming Lin,et al.  Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids , 2002, Analytical and bioanalytical chemistry.

[27]  S. Asher,et al.  Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments. , 2003, Analytical chemistry.

[28]  S. Asher,et al.  OPTICALLY NONLINEAR BRAGG DIFFRACTING NANOSECOND OPTICAL SWITCHES , 1997 .

[29]  S. Asher,et al.  Progress toward the development of a point-of-care photonic crystal ammonia sensor , 2006, Analytical and bioanalytical chemistry.

[30]  A. Lowman,et al.  Composite Hydrogels for Sustained Release of Therapeutic Agents , 2003 .

[31]  Photochemically Controlled Cross-Linking in Polymerized Crystalline Colloidal Array Photonic Crystals , 2004 .

[32]  Lei Liu,et al.  Self-Assembly Motif for Creating Submicron Periodic Materials. Polymerized Crystalline Colloidal Arrays , 1994 .

[33]  Ruifeng Li,et al.  Urea sensing materials via solidified crystalline colloidal arrays , 2002 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Wim E. Hennink,et al.  Novel crosslinking methods to design hydrogels , 2002 .

[36]  K. Stevens,et al.  In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks , 2002, Journal of biomaterials science. Polymer edition.

[37]  O. Ike,et al.  A New Hydrogel and Its Medical Application , 1986, ASAIO transactions.

[38]  Abhijeet Joshi,et al.  Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. , 2006, Biomaterials.

[39]  W. Park,et al.  Effects of PVA sponge containing chitooligosaccharide in the early stage of wound healing , 2004, Journal of materials science. Materials in medicine.

[40]  Kaoru Shimamura,et al.  Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting , 1986 .

[41]  Nikolaos A. Peppas,et al.  Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques , 1995 .

[42]  Anjal C. Sharma,et al.  A general photonic crystal sensing motif: creatinine in bodily fluids. , 2004, Journal of the American Chemical Society.

[43]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[44]  N. Peppas,et al.  Effect of Polymeric Network Structure on Drug Release from Cross-Linked Poly(Vinyl Alcohol) Micromatrices , 2004, Pharmaceutical Research.

[45]  A. Mantecon,et al.  Hydrogels from glycidyl derivatives of poly(vinyl alcohol) , 2003 .

[46]  Yamaguchi Hiroshi,et al.  Swelling and mechanical properties of poly(vinyl alcohol) hydrogels , 1990 .

[47]  Mario Guerra,et al.  Biocompatibility of collagen membranes crosslinked with glutaraldehyde or diphenylphosphoryl azide: an in vitro study. , 2003, Journal of biomedical materials research. Part A.

[48]  Sarkyt E. Kudaibergenov,et al.  Swelling, Shrinking, Deformation, and Oscillation of Polyampholyte Gels Based on Vinyl 2-Aminoethyl Ether and Sodium Acrylate† , 1999 .

[49]  Nikolaos A. Peppas,et al.  Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods , 2000 .

[50]  K. Ijiro,et al.  Highly expansive DNA hydrogel films prepared with photocrosslinkable poly(vinyl alcohol) , 2006 .

[51]  G. Qiao,et al.  Effect of “glutaraldehyde” functionality on network formation in poly(vinyl alcohol) membranes , 2005 .

[52]  Igor K Lednev,et al.  High ionic strength glucose-sensing photonic crystal. , 2003, Analytical chemistry.

[53]  Reese,et al.  Synthesis of Highly Charged, Monodisperse Polystyrene Colloidal Particles for the Fabrication of Photonic Crystals. , 2000, Journal of colloid and interface science.

[54]  Igor K Lednev,et al.  Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. , 2003, Journal of the American Chemical Society.

[55]  Sanford A. Asher,et al.  Photochemically Controlled Photonic Crystals , 2003 .

[56]  K. Schmidt-Rohr,et al.  Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling , 1999 .

[57]  A. Muhlebach,et al.  New water-soluble photo crosslinkable polymers based on modified poly(vinyl alcohol) , 1997 .

[58]  Sanford A. Asher,et al.  Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials , 1996, Science.

[59]  C. Finch Polyvinyl alcohol : developments , 1992 .

[60]  F. Cavalieri,et al.  Study of gelling behavior of poly(vinyl alcohol)-methacrylate for potential utilizations in tissue replacement and drug delivery. , 2004, Biomacromolecules.

[61]  Toyoichi Tanaka,et al.  MULTIPLE PHASES IN IONIC COPOLYMER GELS , 1997 .

[62]  P. Flory Principles of polymer chemistry , 1953 .

[63]  Wojciech Swieszkowski,et al.  An elastic material for cartilage replacement in an arthritic shoulder joint. , 2006, Biomaterials.

[64]  G. D’Errico,et al.  Short Time Dynamics of Solvent Molecules and Supramolecular Organization of Poly (vinyl alcohol) Hydrogels Obtained by Freeze/Thaw Techniques , 2005 .

[65]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[66]  G. Bayramoglu,et al.  Polyethyleneimine-grafted poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) membranes for reversible glucose oxidase immobilization , 2004 .

[67]  Fotios Papadimitrakopoulos,et al.  Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels , 2005, The AAPS Journal.

[68]  Pulsed‐Laser Photothermal Spectroscopy , 1988 .

[69]  O. Okay,et al.  Swelling–deswelling kinetics of ionic poly(acrylamide) hydrogels and cryogels , 2006 .

[70]  J. Pritchard Poly(vinyl alcohol) : basic properties and uses , 1970 .

[71]  F. Auriemma,et al.  X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques , 2004 .

[72]  L. Deng,et al.  The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres , 2004 .

[73]  Anjal C. Sharma,et al.  Photonic crystal aqueous metal cation sensing materials. , 2003, Analytical chemistry.

[74]  Y Ikada,et al.  Poly(vinyl alcohol) hydrogels as soft contact lens material. , 1994, Journal of biomaterials science. Polymer edition.

[75]  J. Ballato,et al.  Mechanochromic Response of Poly(ethylene glycol) Methacrylate Hydrogel Encapsulated Crystalline Colloidal Arrays , 2001 .

[76]  M. Watanabe,et al.  Polymer Gels that Memorize Structures of Mesoscopically Sized Templates. Dynamic and Optical Nature of Periodic Ordered Mesoporous Chemical Gels , 2002 .

[77]  Paul A. Rundquist,et al.  Thermal diffuse scattering from colloidal crystals , 1991 .

[78]  H A Yuan,et al.  The artificial disc: theory, design and materials. , 1996, Biomaterials.

[79]  Hisashi Saito,et al.  Simple and precision design of porous gel as a visible indicator for ionic species and concentration. , 2003, Chemical communications.

[80]  S. Asher,et al.  Intelligent Polymerized Crystalline Colloidal Arrays: Novel Chemical Sensor Materials , 1998 .

[81]  V. Giménez,et al.  Poly(vinyl alcohol) modified with carboxylic acid anhydrides: crosslinking through carboxylic groups , 1997 .

[82]  Sanford A. Asher,et al.  Photoswitchable Spirobenzopyran‐ Based Photochemically Controlled Photonic Crystals , 2005 .

[83]  S. Asher,et al.  Development of a New Optical Wavelength Rejection Filter: Demonstration of its Utility in Raman Spectroscopy , 1984 .