A more accurate algorithm for computing the Christoffel transformation
暂无分享,去创建一个
[1] Beresford N. Parlett,et al. The New qd Algorithms , 1995, Acta Numerica.
[2] G. Golub,et al. Calculation of Gauss quadratures with multiple free and fixed knots , 1983 .
[3] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[4] Françoise Chaitin-Chatelin,et al. Lectures on finite precision computations , 1996, Software, environments, tools.
[5] F. A. Grünbaum,et al. Orthogonal polynomials satisfying differential equations: The role of the Darboux transformation , 1996 .
[6] STABILITY AND SENSITIVITY OF DARBOUX TRANSFORMATION WITHOUT PARAMETER , 2006 .
[7] Gene H. Golub,et al. Matrix computations , 1983 .
[8] Gene H. Golub,et al. On the calculation of Jacobi Matrices , 1983 .
[9] On orthogonal polynomials transformed by the QR algorithm , 1992 .
[10] Walter Gautschi,et al. An Algorithmic Implementation of the Generalized Christoffel Theorem , 1982 .
[11] F. Alberto Grünbaum,et al. Some functions that generalize the Krall-Laguerre polynomials , 1999 .
[12] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[13] Luc Haine,et al. Bispectral darboux transformations: An extension of the Krall polynomials , 1997 .
[14] David Galant,et al. Algebraic methods for modified orthogonal polynomials , 1992 .
[15] Walter Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .
[16] V. Matveev,et al. Differential-difference evolution equations. II (Darboux transformation for the Toda lattice) , 1979 .
[17] Francisco Marcellán,et al. Darboux transformation and perturbation of linear functionals , 2004 .
[18] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[19] E. B. Christoffel,et al. Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .
[20] Martin H. Gutknecht,et al. Lectures On Numerical Mathematics , 1990 .
[21] David Galant,et al. An implementation of Christoffel’s theorem in the theory of orthogonal polynomials , 1971 .
[22] W. Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND ( NUMERICAL ) LINEAR ALGEBRA — A TRIBUTE TO GENE , 2002 .
[23] Luc Vinet,et al. SPECTRAL TRANSFORMATIONS, SELF-SIMILAR REDUCTIONS AND ORTHOGONAL POLYNOMIALS , 1997 .
[24] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus , 1954 .
[25] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .