A more accurate algorithm for computing the Christoffel transformation

A monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. The basic Christoffel transformation with shift @a transforms the monic Jacobi matrix associated with a measure [email protected] into the monic Jacobi matrix associated with ([email protected])[email protected] This transformation is known for its numerous applications to quantum mechanics, integrable systems, and other areas of mathematics and mathematical physics. From a numerical point of view, the Christoffel transformation is essentially computed by performing one step of the LR algorithm with shift, but this algorithm is not stable. We propose a more accurate algorithm, estimate its forward errors, and prove that it is forward stable, i.e., that the obtained forward errors are of similar magnitude to those produced by a backward stable algorithm. This means that the magnitude of the errors is the best one can expect, because it reflects the sensitivity of the problem to perturbations in the input data.

[1]  Beresford N. Parlett,et al.  The New qd Algorithms , 1995, Acta Numerica.

[2]  G. Golub,et al.  Calculation of Gauss quadratures with multiple free and fixed knots , 1983 .

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  Françoise Chaitin-Chatelin,et al.  Lectures on finite precision computations , 1996, Software, environments, tools.

[5]  F. A. Grünbaum,et al.  Orthogonal polynomials satisfying differential equations: The role of the Darboux transformation , 1996 .

[6]  STABILITY AND SENSITIVITY OF DARBOUX TRANSFORMATION WITHOUT PARAMETER , 2006 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Gene H. Golub,et al.  On the calculation of Jacobi Matrices , 1983 .

[9]  On orthogonal polynomials transformed by the QR algorithm , 1992 .

[10]  Walter Gautschi,et al.  An Algorithmic Implementation of the Generalized Christoffel Theorem , 1982 .

[11]  F. Alberto Grünbaum,et al.  Some functions that generalize the Krall-Laguerre polynomials , 1999 .

[12]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[13]  Luc Haine,et al.  Bispectral darboux transformations: An extension of the Krall polynomials , 1997 .

[14]  David Galant,et al.  Algebraic methods for modified orthogonal polynomials , 1992 .

[15]  Walter Gautschi,et al.  THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .

[16]  V. Matveev,et al.  Differential-difference evolution equations. II (Darboux transformation for the Toda lattice) , 1979 .

[17]  Francisco Marcellán,et al.  Darboux transformation and perturbation of linear functionals , 2004 .

[18]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[19]  E. B. Christoffel,et al.  Über die Gaußische Quadratur und eine Verallgemeinerung derselben. , 1858 .

[20]  Martin H. Gutknecht,et al.  Lectures On Numerical Mathematics , 1990 .

[21]  David Galant,et al.  An implementation of Christoffel’s theorem in the theory of orthogonal polynomials , 1971 .

[22]  W. Gautschi,et al.  THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND ( NUMERICAL ) LINEAR ALGEBRA — A TRIBUTE TO GENE , 2002 .

[23]  Luc Vinet,et al.  SPECTRAL TRANSFORMATIONS, SELF-SIMILAR REDUCTIONS AND ORTHOGONAL POLYNOMIALS , 1997 .

[24]  H. Rutishauser Der Quotienten-Differenzen-Algorithmus , 1954 .

[25]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .