Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses

Ten stationary points on the water dimer potential energy surface have been characterized with the coupled-cluster technique which includes all single and double excitations as well as a perturbative approximation of triple excitations [CCSD(T)]. Using a triple-ζ basis set with two sets of polarization functions augmented with higher angular momentum and diffuse functions [TZ2P(f,d)+dif], the fully optimized geometries and harmonic vibrational frequencies of these ten stationary points were determined at the CCSD(T) theoretical level. In agreement with other ab initio investigations, only one of these ten stationary points is a true minimum. Of the other nine structures, three are transition structures, and the remaining are higher order saddle points. These high-level ab initio results indicate that the lowest lying transition state involved in hydrogen interchange is chiral, of C1 symmetry rather than Cs as suggested by recently developed 6D potential energy surfaces. The one- and n-particle limits of t...

[1]  Steve Scheiner,et al.  Hydrogen Bonding: A Theoretical Perspective , 1997 .

[2]  L. Oudejans,et al.  Photodissociation of cyclic HF complexes: Pentamer through heptamer , 2000 .

[3]  M. Head‐Gordon,et al.  Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order , 1990 .

[4]  G. Groenenboom,et al.  Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients , 2000 .

[5]  D. Hadzi Theoretical treatments of hydrogen bonding , 1997 .

[6]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[7]  Nicholas C. Handy,et al.  Size-consistent Brueckner theory limited to double substitutions , 1989 .

[8]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[9]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[10]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[11]  Wim Klopper,et al.  Orbital-invariant formulation of the MP2-R12 method , 1991 .

[12]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[13]  K. Szalewicz,et al.  Effects of monomer geometry and basis set saturation on computed depth of water dimer potential , 1996 .

[14]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[15]  P. Kollman,et al.  Theory of the Hydrogen Bond: Ab Initio Calculations on Hydrogen Fluoride Dimer and the Mixed Water–Hydrogen Fluoride Dimer , 1970 .

[16]  H. B. Jansen,et al.  Non-empirical molecular orbital calculations on the protonation of carbon monoxide , 1969 .

[17]  Trygve Helgaker,et al.  Basis set convergence of the interaction energy of hydrogen-bonded complexes , 1999 .

[18]  M. Quack,et al.  Vibrational spectra of (HF)2, (HF)n and their D-isotopomers: Mode selective rearrangements and nonstatistical unimolecular decay , 1989 .

[19]  Wim Klopper,et al.  Computational determination of equilibrium geometry and dissociation energy of the water dimer , 2000 .

[20]  K. Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds: Dimeric H2O with the Slater Minimal Basis Set , 1970 .

[21]  Roger E. Miller,et al.  Molecular clusters: Structure and dynamics of weakly bound systems , 1996 .

[22]  J. Laane,et al.  Structures and Conformations of Non-Rigid Molecules , 1993 .

[23]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[24]  Roger Hayward,et al.  The Hydrogen Bond , 1960 .

[25]  M. Quack,et al.  Explicitly correlated coupled cluster calculations of the dissociation energies and barriers to concerted hydrogen exchange of (HF)n oligomers (n=2,3,4,5) , 1998 .

[26]  David Feller,et al.  The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water , 1993 .

[27]  W. D. Allen,et al.  The barrier to linearity of water , 1999 .

[28]  A. D. McLean,et al.  Accurate calculation of the attractive interaction of two ground state helium atoms , 1973 .

[29]  W. D. Allen,et al.  A high level ab initio map and direct statistical treatment of the fragmentation of singlet ketene , 1996 .

[30]  M. Quack,et al.  HF dimer: Empirically refined analytical potential energy and dipole hypersurfaces from ab initio calculations , 1998 .

[31]  R. Saykally,et al.  Spectroscopic determination of the water pair potential. , 1999, Science.

[32]  S. Scheiner,et al.  Ab initio studies of hydrogen bonds: the water dimer paradigm. , 1994, Annual review of physical chemistry.

[33]  D. Nesbitt,et al.  Potential surfaces and dynamic of weakly bound trimers: perspectives from high resolution IR spectroscopy , 1995 .

[34]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[35]  P. G. Hill A UNIFIED FUNDAMENTAL EQUATION FOR THE THERMODYNAMIC PROPERTIES OF H2O , 1990 .

[36]  R. C. Cohen,et al.  MULTIDIMENSIONAL INTERMOLECULAR POTENTIAL SURFACES FROM VIBRATION- ROTATION-TUNNELING (VRT) SPECTRA OF VAN DER WAALS COMPLEXES , 1991 .

[37]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[38]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[39]  Edward T. Seidl,et al.  Parallel direct implementations of second‐order perturbation theories , 1995, J. Comput. Chem..

[40]  Brian J. Smith,et al.  Transition structures for the interchange of hydrogen atoms within the water dimer , 1990 .

[41]  Justin T. Fermann,et al.  The torsional conformations of butane: Definitive energetics from ab initio methods , 1997 .

[42]  Gregory S. Tschumper,et al.  Subtle basis set effects on hydrogen bonded systems , 1999 .

[43]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[44]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[45]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[46]  Henry F. Schaefer,et al.  In pursuit of the ab initio limit for conformational energy prototypes , 1998 .

[47]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[48]  Gustavo E. Scuseria,et al.  Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2 , 1991 .

[49]  J. Noga,et al.  An explicitly correlated coupled cluster calculation of the helium–helium interatomic potential , 1995 .

[50]  A. Stone,et al.  Towards an accurate intermolecular potential for water , 1992 .

[51]  M. Quack,et al.  Vibrational dynamics of (HF) n aggregates from an ab initio based analytical (1+2+3)-body potential , 1993 .

[52]  Edward F. Valeev,et al.  Evaluation of two-electron integrals for explicit r12 theories , 2000 .

[53]  C. Bender,et al.  Interaction potential between two rigid HF molecules , 1974 .

[54]  M. Quack,et al.  A new ab initio based six-dimensional semi-empirical pair interaction potential for HF , 1996 .

[55]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[56]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[57]  Ida M. B. Nielsen,et al.  A new direct MP2 gradient algorithm with implementation on a massively parallel computer , 1996 .

[58]  S. Scheiner Molecular Interactions. From van der Waals to Strongly Bound Complexes , 1997 .

[59]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[60]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[61]  H. Lischka,et al.  Coupled pair functional study on the hydrogen fluoride dimer. I. Energy surface and characterization of stationary points , 1988 .

[62]  Pavel Hobza,et al.  Reliable theoretical treatment of molecular clusters: Counterpoise-corrected potential energy surface and anharmonic vibrational frequencies of the water dimer , 1999 .

[63]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[64]  Wesley D. Allen,et al.  The heat of formation of NCO , 1993 .

[65]  G. Diercksen,et al.  SCF MO LCGO studies of hydrogen bonding: The hydrogen fluoride dimer , 1970 .

[66]  Martin Quack,et al.  Potential energy surfaces, quasiadiabatic channels, rovibrational spectra, and intramolecular dynamics of (HF)2 and its isotopomers from quantum Monte Carlo calculations , 1991 .

[67]  Dong H. Zhang,et al.  Exact full‐dimensional bound state calculations for (HF)2, (DF)2, and HFDF , 1995 .

[68]  E. Kryachko,et al.  Conceptual Perspectives in Quantum Chemistry , 1997 .

[69]  H. Schaefer,et al.  Systematic study of molecular anions within the self‐consistent‐field approximation: OH−, CN−, C2H−, NH−2, and CH−3 , 1985 .

[70]  K. Morokuma,et al.  Molecular‐Orbital Studies of Hydrogen Bonds. An Ab Initio Calculation for Dimeric H2O , 1968 .

[71]  Trygve Helgaker,et al.  A systematic ab initio study of the water dimer in hierarchies of basis sets and correlation models , 1997 .

[72]  Hans Peter Lüthi,et al.  The MP2 limit correction applied to coupled cluster calculations of the electronic dissociation energies of the hydrogen fluoride and water dimers , 1999 .