Mechanical performance of hollow tetrahedral truss cores

Abstract Hollow tetrahedral truss cores composed of nanocrystalline nickel are fabricated and tested, and the resulting strengths compared to Nomex ® honeycomb, a sandwich core commonly in use in aerospace applications. We conduct a systematic finite element study to determine optimal geometric parameters of hollow tetrahedral truss cores given height and density constraints. We introduce nodal height truncation as an additional parameter for this architecture, and demonstrate that nodal truncation can yield further improvements in the shear and compression strength of truss cores. Informed by the finite element results, we proceed to fabricate specimens by additively manufacturing polymer templates, coating the templates with nanocrystalline nickel, and subsequently removing the templates resulting in free-standing, hollow truss cores. Mechanical testing demonstrates that judicious selection of the architecture of hollow truss cores results in structures with shear and compression strengths exceeding those of Nomex ® honeycombs at comparable densities.

[1]  S. Kyriakides,et al.  Bifurcation and localization instabilities in cylindrical shells under bending-II. Predictions , 1992 .

[2]  Roderic S. Lakes,et al.  Moisture ingression in honeycomb core sandwich panels , 1997 .

[3]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[4]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[5]  Norman A. Fleck,et al.  End compression of sandwich columns , 2002 .

[6]  Lorenzo Valdevit,et al.  Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design , 2013 .

[7]  F. Zok,et al.  Pyramidal Lattice Structures for High Strength and Energy Absorption , 2013 .

[8]  L. Brazier ON THE FLEXURE OF THIN CYLINDRICAL SHELLS AND OTHER SECTION , 1927 .

[9]  Haydn N. G. Wadley,et al.  Hollow pyramidal lattice truss structures , 2011 .

[10]  Eugene E Lundquiest Strength Tests of Thin-Walled Duralumin Cylinders in Combined Transverse Shear and Bending , 1935 .

[11]  John W. Hutchinson,et al.  Performance of sandwich plates with truss cores , 2004 .

[12]  P. Seide,et al.  Buckling of thin-walled circular cylinders , 1968 .

[13]  F. R. Shanley Inelastic Column Theory , 1947 .

[14]  Haydn N. G. Wadley,et al.  Cellular Metal Truss Core Sandwich Structures , 2002 .

[15]  Lorenzo Valdevit,et al.  Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery , 2013 .

[16]  Steven Nutt,et al.  Micro‐scale Truss Structures formed from Self‐Propagating Photopolymer Waveguides , 2007 .

[17]  M. Ashby,et al.  Effective properties of the octet-truss lattice material , 2001 .

[18]  Norman A. Fleck,et al.  Fabrication and structural performance of periodic cellular metal sandwich structures , 2003 .

[19]  N. Fleck,et al.  Collapse mechanism maps for the hollow pyramidal core of a sandwich panel under transverse shear , 2011 .

[20]  A. Neumeister,et al.  Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography , 2008 .

[21]  N. Fleck,et al.  Collapse mechanism maps for a hollow pyramidal lattice , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  N. Fleck,et al.  Collapse of truss core sandwich beams in 3-point bending , 2001 .

[23]  Haydn N. G. Wadley,et al.  Cellular metal lattices with hollow trusses , 2005 .

[24]  S. Kyriakides,et al.  Bifurcation and localization instabilities in cylindrical shells under bending—I. Experiments , 1992 .