EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSIONS IN STAR-FORMING GALAXIES AT HIGH REDSHIFT

Motivated by Genzel et al.'s observations of high-redshift star-forming galaxies, containing clumpy and turbulent rings or disks, we build a set of equations describing the dynamical evolution of gaseous disks with inclusion of star formation and its feedback. Transport of angular momentum is due to “turbulent” viscosity induced by supernova explosions in the star formation region. Analytical solutions of the equations are found for the initial cases of a gaseous ring and the integrated form for a gaseous disk, respectively. For a ring with enough low viscosity, it evolves in a slow process of gaseous diffusion and star formation near the initial radius. For a high viscosity, the ring rapidly diffuses in the early phase. The diffusion drives the ring into a region with a low viscosity and starts the second phase undergoing pile-up of gas at a radius following the decreased viscosity torque. The third is a sharply decreasing phase because of star formation consumption of gas and efficient transportation of gas inward forming a stellar disk. We apply the model to two z ∼ 2 galaxies BX 482 and BzK 6004, and find that they are undergoing a decline in their star formation activity.

[1]  R. Hynes,et al.  THE QUIESCENT OPTICAL AND INFRARED COUNTERPART TO EXO 0748–676 = UY VOL , 2009, 0903.4164.

[2]  J. Pringle,et al.  A simple model for the relationship between star formation and surface density , 2009, 0903.4098.

[3]  C. Walcher,et al.  The orientations of molecular clouds in the outer Galaxy: evidence for the scale of the turbulence driver? , 2009, 0903.2241.

[4]  Chen Hu,et al.  THE STARBURST–ACTIVE GALACTIC NUCLEUS CONNECTION: THE ROLE OF YOUNG STELLAR POPULATIONS IN FUELING SUPERMASSIVE BLACK HOLES , 2009, 0903.1901.

[5]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[6]  J. Wadsley,et al.  THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.

[7]  C. McKee,et al.  THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. II: H i AND H2 COLUMN DENSITIES , 2008, 0811.0004.

[8]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[9]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[10]  K. Wada,et al.  Coevolution of Supermassive Black Holes and Circumnuclear Disks , 2008, 0803.2271.

[11]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[12]  R. Dav'e The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function? , 2007, 0710.0381.

[13]  F. Bournaud,et al.  Multiple minor mergers: formation of elliptical galaxies and constraints for the growth of spiral disks , 2007, 0709.3439.

[14]  S. White,et al.  Galaxy growth in the concordance ΛCDM cosmology , 2007, 0708.1814.

[15]  James E. Larkin,et al.  Integral Field Spectroscopy of High-Redshift Star-forming Galaxies with Laser-guided Adaptive Optics: Evidence for Dispersion-dominated Kinematics , 2007, 0707.3634.

[16]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[17]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[18]  M. McElwain,et al.  Integral Field Spectroscopy of a Candidate Disk Galaxy at z ~ 1.5 Using Laser Guide Star Adaptive Optics , 2006, astro-ph/0612199.

[19]  M. Kitzbichler,et al.  The high‐redshift galaxy population in hierarchical galaxy formation models , 2006, astro-ph/0609636.

[20]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[21]  Yan-mei Chen,et al.  Cosmological Evolution of the Duty Cycle of Quasars , 2006, astro-ph/0606704.

[22]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[23]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[24]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[25]  F. Bertoldi,et al.  High-Resolution Millimeter Imaging of Submillimeter Galaxies , 2005 .

[26]  E. Quataert,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005, astro-ph/0503027.

[27]  Munich,et al.  The Supernova Rate-Velocity Dispersion Relation in the Interstellar Medium , 2005, astro-ph/0506339.

[28]  B. Vollmer,et al.  Turbulent viscosity in clumpy accretion disks - II. Supernova driven turbulence in the Galaxy , 2003, astro-ph/0303532.

[29]  C. Norman,et al.  Obscuring Material around Seyfert Nuclei with Starbursts , 2002, astro-ph/0201035.

[30]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[31]  ApJ, in press , 1999 .

[32]  S. Mineshige,et al.  Black-Hole Accretion Disks , 1999 .

[33]  L. Hernquist,et al.  Excitation of Activity in Galaxies by Minor Mergers , 1995, astro-ph/9501090.

[34]  D. Lin,et al.  The Formation of the Exponential Disk in Spiral Galaxies , 1987 .

[35]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .