Observation of interface dynamics and Cu island formation at a crystalline Si/liquid Al-alloy interface

[1]  H. Fraser,et al.  Phase transformation strengthening of high-temperature superalloys , 2016, Nature Communications.

[2]  W. Kaplan,et al.  Quantification of ordering at a solid-liquid interface using plasmon electron energy loss spectroscopy , 2015 .

[3]  J. Tersoff,et al.  Atomic-Scale Variability and Control of III-V Nanowire Growth Kinetics , 2014, Science.

[4]  J. Howe,et al.  In situ observation of Cu segregation and phase nucleation at a solid–liquid interface in an Al alloy , 2013 .

[5]  W. Carter,et al.  A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting , 2013, Journal of Materials Science.

[6]  W. Kaplan,et al.  Direct quantification of ordering at a solid-liquid interface using aberration corrected transmission electron microscopy. , 2013, Physical review letters.

[7]  B. Laird,et al.  Atomistic characterization of the chemically heterogeneous Al–Pb solid–liquid interface , 2012 .

[8]  W. Sigle,et al.  Interfacial plasmon at a singular solid-liquid interface in a partially molten aluminum alloy , 2012 .

[9]  J. Howe,et al.  Melting and supercooling studies in submicron Al particles using valence electron energy-loss spectroscopy in a transmission electron microscope , 2011 .

[10]  J. Howe,et al.  Kinetic Analyses of the Growth and Dissolution Phenomena of Primary Si and α-Al in Partially Molten Al-Si (-Cu-Mg) Alloy Particles Using In Situ Transmission Electron Microscopy , 2011 .

[11]  J. Howe,et al.  A method to predict the orientation relationship, interface planes and morphology between a crystalline precipitate and matrix. Part I. Approach , 2011 .

[12]  W. Kaplan,et al.  Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics , 2011, Science.

[13]  James R. Morris,et al.  Atomistic simulation of CdTe solid-liquid coexistence equilibria , 2009 .

[14]  Y. Mishin,et al.  Solid-liquid interface free energy in binary systems: theory and atomistic calculations for the (110) Cu-Ag interface. , 2009, The Journal of chemical physics.

[15]  X. Zeng,et al.  Anisotropy of crystal-melt interfacial free energy of silicon by simulation , 2008 .

[16]  Govindarajan Muralidharan,et al.  In Situ Determination of the Nanoscale Chemistry and Behavior of Solid-Liquid Systems , 2007, Science.

[17]  W. Craig Carter,et al.  Complexion: A new concept for kinetic engineering in materials science , 2007 .

[18]  B. Laird,et al.  The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. , 2006, The Journal of chemical physics.

[19]  W. Kaplan,et al.  STRUCTURAL ORDER IN LIQUIDS INDUCED BY INTERFACES WITH CRYSTALS , 2006 .

[20]  Patrick M. Kelly,et al.  Edge-to-edge matching—The fundamentals , 2006 .

[21]  W. Kaplan,et al.  Ordered Liquid Aluminum at the Interface with Sapphire , 2005, Science.

[22]  A. L. Greer,et al.  Grain refinement of alloys by inoculation of melts , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  James R. Morris Complete mapping of the anisotropic free energy of the crystal-melt interface in Al , 2002 .

[24]  Alain Karma,et al.  Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations , 2002 .

[25]  J. Hoyt,et al.  Atomic-Scale Simulation Study of Equilibrium Solute Adsorption at Alloy Solid-Liquid Interfaces , 2002 .

[26]  K. Furuya,et al.  Ordering in a Fluid Inert Gas Confined by Flat Surfaces , 2002, Science.

[27]  A. Karma,et al.  Method for computing the anisotropy of the solid-liquid interfacial free energy. , 2001, Physical review letters.

[28]  T. Lippmann,et al.  Observation of ® ve-fold local symmetry in liquid lead , 2022 .

[29]  J. Howe Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces , 1997 .

[30]  M. Harmer,et al.  Grain Boundary Complexions , 2014 .