A Combinatorial Study of k-Valued Rational Relations

We give combinatorial proofs for three fundamental properties of k-valued rational relations: the decomposition of a k-valued rational relation into a union of k rational functions; the decidability of the k-valuedness; the decidability of the equivalence for k-valued rational relations. Positive answers are already known for these properties. Our contribution lies in the fact that our proofs are built on few elementary combinatorial arguments, which make them considerably shorter and hopefully easier to understand. In particular, in order to tackle the k-valuedness, we generalize a combinatorial characterization of the rational functions due to Schutzenberger.

[1]  Andreas Weber Decomposing A k-Valued Transducer into k Unambiguous Ones , 1996, RAIRO Theor. Informatics Appl..

[2]  Karel Culik,et al.  The Equivalence of Finite Valued Transducers (on HDTOL Languages) is Decidable , 1986, MFCS.

[3]  Marcel Paul Schützenberger,et al.  Sur les Relations Rationnelles Entre Monoides Libres , 1976, Theor. Comput. Sci..

[4]  Rodrigo de Souza,et al.  Étude structurelle des transducteurs de norme bornée , 2008 .

[5]  Ronald L. Graham,et al.  Erdős on Graphs , 2020 .

[6]  Reinhard Klemm,et al.  Economy of Description for Single-Valued Transducers , 1995, Inf. Comput..

[7]  Rodrigo de Souza On the Decidability of the Equivalence for k-Valued Transducers , 2008, Developments in Language Theory.

[8]  Andreas Weber,et al.  Decomposing Finite-Valued Transducers and Deciding Their Equivalence , 1993, SIAM J. Comput..

[9]  Jorge E. Mezei,et al.  On Relations Defined by Generalized Finite Automata , 1965, IBM J. Res. Dev..

[10]  Andreas Weber,et al.  A Decomposition Theorem for Finite-Valued Tranducers and an Application to the Equivalence Problem , 1988, MFCS.

[11]  Christian Choffrut,et al.  Une Caracterisation des Fonctions Sequentielles et des Fonctions Sous-Sequentielles en tant que Relations Rationnelles , 1977, Theor. Comput. Sci..

[12]  Jacques Sakarovitch,et al.  Lexicographic Decomposition of k-Valued Transducers , 2010, Theory of Computing Systems.

[13]  Jacques Sakarovitch,et al.  Squaring transducers: an efficient procedure for deciding functionality and sequentiality , 2000, Theor. Comput. Sci..

[14]  Eitan M. Gurari,et al.  A note on finite-valued and finitely ambiguous transducers , 1983, Mathematical systems theory.

[15]  Jacques Sakarovitch,et al.  On the Decidability of Bounded Valuedness for Transducers , 2008, MFCS.

[16]  Eitan M. Gurari,et al.  The Complexity of Decision Problems for Finite-Turn Multicounter Machines , 1981, J. Comput. Syst. Sci..

[17]  Andreas Weber,et al.  On the valuedness of finite transducers , 1990, Acta Informatica.

[18]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[19]  Jacques Sakarovitch,et al.  On the decomposition of k-valued rational relations , 2008, STACS.