Robust Design Optimization of Electrical Machines: Multi-Objective Approach

[1]  Martin Doppelbauer,et al.  Experimental Study of the Amorphous Magnetic Material for High-Speed Sleeve-Free PM Rotor Application , 2020, IEEE Transactions on Industrial Electronics.

[2]  Zhen Huang,et al.  Design and Analysis of a Small-Scale Linear Propulsion System for Maglev Applications (2)–The HTS No-Insulation Magnets , 2019, IEEE Transactions on Applied Superconductivity.

[3]  X Jannot,et al.  Multiphysic Modeling of a High-Speed Interior Permanent-Magnet Synchronous Machine for a Multiobjective Optimal Design , 2011, IEEE Transactions on Energy Conversion.

[4]  Carlos M. Fonseca,et al.  Computing and Updating Hypervolume Contributions in Up to Four Dimensions , 2018, IEEE Transactions on Evolutionary Computation.

[5]  Longya Xu,et al.  Analytical Prediction of Torque Ripple in Surface-Mounted Permanent Magnet Motors Due to Manufacturing Variations , 2016, IEEE Transactions on Energy Conversion.

[6]  Kyu-Seob Kim,et al.  Taguchi robust optimum design for reducing the cogging torque of EPS motors considering magnetic unbalance caused by manufacturing tolerances of PM , 2016 .

[7]  Wei Xu,et al.  Multiobjective Sequential Optimization Method for the Design of Industrial Electromagnetic Devices , 2012, IEEE Transactions on Magnetics.

[8]  Jianguo Zhu,et al.  Design Optimization of a Permanent Magnet Claw Pole Motor With Soft Magnetic Composite Cores , 2018, IEEE Transactions on Magnetics.

[9]  Youguang Guo,et al.  Application-Oriented Robust Design Optimization Method for Batch Production of Permanent-Magnet Motors , 2018, IEEE Transactions on Industrial Electronics.

[10]  Chengcheng Liu,et al.  Comparative Study of Small Electrical Machines With Soft Magnetic Composite Cores , 2017, IEEE Transactions on Industrial Electronics.

[11]  Jianguo Zhu,et al.  A Review of Design Optimization Methods for Electrical Machines , 2017 .

[12]  Jianguo Zhu,et al.  Robust multiobjective and multidisciplinary design optimization of electrical drive systems , 2018, CES Transactions on Electrical Machines and Systems.

[13]  G. Bramerdorfer Tolerance Analysis for Electric Machine Design Optimization: Classification, Modeling and Evaluation, and Example , 2019, IEEE Transactions on Magnetics.

[14]  Zhijian Jin,et al.  Design and Analysis of a Small-Scale Linear Propulsion System for Maglev Applications (1)—The Overall Design Process , 2019, IEEE Transactions on Applied Superconductivity.

[15]  Jianguo Zhu,et al.  Development of PM Transverse Flux Motors With Soft Magnetic Composite Cores , 2011, IEEE Transactions on Magnetics.

[16]  Dianhai Zhang,et al.  New Reliability-Based Robust Design Optimization Algorithms for Electromagnetic Devices Utilizing Worst Case Scenario Approximation , 2013, IEEE Transactions on Magnetics.

[17]  Jan K. Sykulski,et al.  Six Sigma Quality Approach to Robust Optimization , 2015, IEEE Transactions on Magnetics.

[18]  Wei Xu,et al.  Multiobjective Sequential Design Optimization of PM-SMC Motors for Six Sigma Quality Manufacturing , 2014, IEEE Transactions on Magnetics.

[19]  Jie Zhang,et al.  A Simple and Fast Hypervolume Indicator-Based Multiobjective Evolutionary Algorithm , 2015, IEEE Transactions on Cybernetics.

[20]  Hui Wang,et al.  An Efficient Multiobjective Design Optimization Method for a PMSLM Based on an Extreme Learning Machine , 2019, IEEE Transactions on Industrial Electronics.

[21]  Sang-Yong Jung,et al.  A Novel Surrogate-Assisted Multi-Objective Optimization Algorithm for an Electromagnetic Machine Design , 2015, IEEE Transactions on Magnetics.

[22]  Maarten J. Kamper,et al.  Weighted Factor Multiobjective Design Optimization of a Reluctance Synchronous Machine , 2016, IEEE Transactions on Industry Applications.

[23]  Li Quan,et al.  Design and Multi-Objective Stratified Optimization of a Less-Rare-Earth Hybrid Permanent Magnets Motor With High Torque Density and Low Cost , 2019, IEEE Transactions on Energy Conversion.

[24]  Frédéric Wurtz,et al.  Multiphysics Design Optimization of a Permanent Magnet Synchronous Generator , 2017, IEEE Transactions on Industrial Electronics.

[25]  Jiancheng Fang,et al.  Multiphysics Design and Optimization of High-Speed Permanent-Magnet Electrical Machines for Air Blower Applications , 2016, IEEE Transactions on Industrial Electronics.

[26]  Su-Jin Lee,et al.  Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design , 2014 .

[27]  Edwin Lughofer,et al.  DECMO2: a robust hybrid and adaptive multi-objective evolutionary algorithm , 2014, Soft Computing.

[28]  D.A. Lowther,et al.  Selection of approximation models for electromagnetic device optimization , 2006, IEEE Transactions on Magnetics.

[29]  R. A. H. de Oliveira,et al.  Optimized Linear Motor for Urban Superconducting Magnetic Levitation Vehicles , 2020, IEEE Transactions on Applied Superconductivity.

[30]  Gerd Bramerdorfer,et al.  Surrogate-Based Multi-Objective Optimization of Electrical Machine Designs Facilitating Tolerance Analysis , 2017, IEEE Transactions on Magnetics.

[31]  Minh-Trien Pham,et al.  Robust Global Optimization of Electromagnetic Devices With Uncertain Design Parameters: Comparison of the Worst Case Optimization Methods and Multiobjective Optimization Approach Using Gradient Index , 2013, IEEE Transactions on Magnetics.

[32]  Andrea Cavagnino,et al.  Modern Electrical Machine Design Optimization: Techniques, Trends, and Best Practices , 2018, IEEE Transactions on Industrial Electronics.

[33]  Dan M. Ionel,et al.  A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[34]  Hisao Ishibuchi,et al.  R2-Based Hypervolume Contribution Approximation , 2018, IEEE Transactions on Evolutionary Computation.

[35]  Z. Q. Zhu,et al.  Influence of Manufacturing Tolerances on Cogging Torque in Interior Permanent Magnet Machines with Eccentric and Sinusoidal Rotor Contours , 2017, IEEE Transactions on Industry Applications.

[36]  Li Quan,et al.  Multiobjective Optimization Design of a Double-Rotor Flux-Switching Permanent Magnet Machine Considering Multimode Operation , 2019, IEEE Transactions on Industrial Electronics.

[37]  Shuangxia Niu,et al.  Multi-Objective Optimization of a Direct-Drive Dual-Structure Permanent Magnet Machine , 2019, IEEE Transactions on Magnetics.

[38]  Jianguo Zhu,et al.  Rotor Stress Analysis for High-Speed Permanent Magnet Machines Considering Assembly Gap and Temperature Gradient , 2019, IEEE Transactions on Energy Conversion.

[39]  Ren-Jye Yang,et al.  Design for six sigma through robust optimization , 2004 .

[40]  Shuhong Wang,et al.  System-Level Design Optimization Method for Electrical Drive Systems—Robust Approach , 2015, IEEE Transactions on Industrial Electronics.

[41]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[42]  Shuangxia Niu,et al.  Differential Evolution-Based Multiobjective Optimization of the Electrical Continuously Variable Transmission System , 2018, IEEE Transactions on Industrial Electronics.

[43]  Kay Hameyer,et al.  Manufacturing Tolerances: Estimation and Prediction of Cogging Torque Influenced by Magnetization Faults , 2012, IEEE Transactions on Magnetics.

[44]  Tao Li,et al.  Multiphysics Analysis of an Axial-Flux In-Wheel Motor With an Amorphous Alloy Stator , 2020, IEEE Access.

[45]  Gang Lei,et al.  Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems , 2016 .

[46]  Shuhong Wang,et al.  System-Level Design Optimization Methods for Electrical Drive Systems: Deterministic Approach , 2014, IEEE Transactions on Industrial Electronics.