Strain-rate and grain-size effect on substructures and mechanical properties in OFHC copper during tension

[1]  S. Varma,et al.  Effect of grain size on deformation-induced martensite formation in 304 and 316 stainless steels during room temperature tensile testing , 1994 .

[2]  J. Rao,et al.  The effect of grain size and strain rate on the , 1993, Metallurgical and Materials Transactions A.

[3]  S. K. Varma,et al.  The combined effect of grain size and strain rate on the dislocation substructures and mechanical properties in pure aluminum , 1993 .

[4]  J. Rao,et al.  Effect of Strain Rate on Cell Size , 1992, Metallurgical and Materials Transactions A.

[5]  S. Varma,et al.  Structure-sensitive properties during room-temperature wire drawing at various speeds in nickel 200 , 1992 .

[6]  U. S. Lindholm,et al.  Shock Wave and High-Strain-Rate Phenomena in Materials , 1992 .

[7]  W. Dahl,et al.  Evolution of dislocation structures and deformation behavior of iron at different temperatures: Part I. strain hardening curves and cellular structure , 1992 .

[8]  S. Thiagarajan,et al.  Effect of strain rate on dislocation cell size in oxygen-free high-conductivity copper during a tensile test , 1992 .

[9]  W. Gourdin,et al.  Flow stress of OFE copper at strain rates from 10−3 to 104s−1: Grain-size effects and comparison to the mechanical threshold stress model , 1991 .

[10]  N. Hansen,et al.  Characteristics of second generation microbands in cold-rolled copper , 1991 .

[11]  N. Hansen Cold deformation microstructures , 1990 .

[12]  N. Hansen,et al.  Flow stress anisotropy in aluminium , 1990 .

[13]  L. Priester,et al.  Effect of strain rate on the dislocation substructure in deformed copper polycrystals , 1989 .

[14]  J. Gracio,et al.  Effect of grain size on substructural evolution and plastic behaviour of copper , 1989 .

[15]  N. Park,et al.  The development of the deformed microstructure in commercially pure nickel , 1989 .

[16]  Doris Kuhlmann-Wilsdorf,et al.  Theory of plastic deformation: - properties of low energy dislocation structures , 1989 .

[17]  U. F. Kocks,et al.  The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals , 1984 .

[18]  U. F. Kocks,et al.  Kinetics of flow and strain-hardening☆ , 1981 .

[19]  M. Hatherly,et al.  Microstructure of cold-rolled copper , 1979 .

[20]  L. Murr,et al.  Experimental and theoretical observations on the relationship between dislocation cell size, dislocation density, residual hardness, peak pressure and pulse duration in shock-loaded nickel , 1978 .

[21]  A. Thompson Substructure strengthening mechanisms , 1977 .

[22]  A. Thompson Effect of grain size on work hardening in nickel , 1977 .

[23]  Anthony W. Thompson,et al.  The dependence of polycrystal work hardening on grain size , 1973 .

[24]  H. Fujita,et al.  The effect of grain size and deformation sub-structure on mechanical properties of polycrystalline aluminum , 1973 .

[25]  D. L. Holt,et al.  The Dislocation Cell IZE AND Dislocation Density in Copper Deformed at Temperatures between 25 and 700 Degrees C. , 1972 .

[26]  A. Korbel,et al.  The Role of Strain Rate in the Formation of Dislocation Structure and Its Influence on the Mechanical Properties of Aluminium , 1972 .

[27]  D. L. Holt,et al.  Dislocation Cell Formation in Metals , 1970 .