Mining user–user communities for a weighted bipartite network using spark GraphFrames and Flink Gelly

[1]  Yin Zhang,et al.  Heterogeneous information network-based music recommendation system in mobile networks , 2020, Comput. Commun..

[2]  Martin Randles,et al.  An optimisation tool for robust community detection algorithms using content and topology information , 2019, The Journal of Supercomputing.

[3]  E A Leicht,et al.  Community structure in directed networks. , 2007, Physical review letters.

[4]  Martin Hlosta,et al.  Open University Learning Analytics dataset , 2017, Scientific Data.

[5]  Bin Wu,et al.  Overlapping Community Detection in Bipartite Networks , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[6]  Donald A. Jackson,et al.  Similarity Coefficients: Measures of Co-Occurrence and Association or Simply Measures of Occurrence? , 1989, The American Naturalist.

[7]  Roger Guimerà,et al.  Module identification in bipartite and directed networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  S. Wasserman,et al.  Models and Methods in Social Network Analysis , 2005 .

[9]  Joseph M. Hellerstein,et al.  Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..

[10]  Stephen J Beckett,et al.  Improved community detection in weighted bipartite networks , 2016, Royal Society Open Science.

[11]  Steve Gregory,et al.  Detecting community structure in networks using edge prediction methods , 2012, ArXiv.

[12]  U Kang,et al.  FlexGraph: Flexible partitioning and storage for scalable graph mining , 2020, PloS one.

[13]  Kan Li,et al.  A unified community detection algorithm in complex network , 2014, Neurocomputing.

[14]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[15]  Ning Liu,et al.  Large-scale graph processing systems: a survey , 2020, Frontiers of Information Technology & Electronic Engineering.

[16]  Reynold Xin,et al.  GraphX: Unifying Data-Parallel and Graph-Parallel Analytics , 2014, ArXiv.

[17]  B. Tadić,et al.  Networks and emotion-driven user communities at popular blogs , 2010 .

[18]  Feras Al-Obeidat,et al.  User community detection via embedding of social network structure and temporal content , 2020, Inf. Process. Manag..

[19]  Seif Haridi,et al.  Apache Flink™: Stream and Batch Processing in a Single Engine , 2015, IEEE Data Eng. Bull..

[20]  Hong Jiang,et al.  Using High-Bandwidth Networks Efficiently for Fast Graph Computation , 2019, IEEE Transactions on Parallel and Distributed Systems.

[21]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[22]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[23]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[24]  Christos Faloutsos,et al.  PEGASUS: mining peta-scale graphs , 2011, Knowledge and Information Systems.

[25]  Jelena Grujic,et al.  Movies Recommendation Networks as Bipartite Graphs , 2008, ICCS.

[26]  Tsuyoshi Murata,et al.  Detecting Communities from Bipartite Networks Based on Bipartite Modularities , 2009, 2009 International Conference on Computational Science and Engineering.

[27]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[28]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[29]  Joseph Gonzalez,et al.  PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs , 2012, OSDI.

[30]  M. Barber Modularity and community detection in bipartite networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  A. Ochiai Zoogeographical Studies on the Soleoid Fishes Found in Japan and its Neighbouring Regions-III , 1957 .

[32]  M Ausloos,et al.  Uncovering collective listening habits and music genres in bipartite networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Geoffrey C. Fox,et al.  Twister: a runtime for iterative MapReduce , 2010, HPDC '10.

[34]  Christos Faloutsos,et al.  PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[35]  Reynold Xin,et al.  GraphX: a resilient distributed graph system on Spark , 2013, GRADES.

[36]  Michael D. Ernst,et al.  HaLoop , 2010, Proc. VLDB Endow..

[37]  Michael D. Ernst,et al.  HaLoop , 2010 .

[38]  Bosiljka Tadic,et al.  Bloggers behavior and emergent communities in Blog space , 2009, ArXiv.

[39]  Sergei Gorlatch,et al.  A formally based parallelization of data mining algorithms for multi-core systems , 2018, The Journal of Supercomputing.

[40]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[41]  Johannes Gehrke,et al.  Asynchronous Large-Scale Graph Processing Made Easy , 2013, CIDR.

[42]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[43]  Tsuyoshi Murata,et al.  BiMLPA: Community Detection in Bipartite Networks by Multi-Label Propagation , 2020, Proceedings of NetSci-X 2020: Sixth International Winter School and Conference on Network Science.

[44]  Marcel Ausloos,et al.  On the genre-fication of music: a percolation approach , 2005, ArXiv.

[45]  Reynold Xin,et al.  Apache Spark , 2016 .

[46]  Yao Wang,et al.  LED: A fast overlapping communities detection algorithm based on structural clustering , 2016, Neurocomputing.

[47]  Binyu Zang,et al.  PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs , 2019, TOPC.

[48]  Viktor K. Prasanna,et al.  HitGraph: High-throughput Graph Processing Framework on FPGA , 2019, IEEE Transactions on Parallel and Distributed Systems.

[49]  Kathy J. Horadam,et al.  Community Detection in Bipartite Networks Using Random Walks , 2014, CompleNet.

[50]  K. Horadam,et al.  Community Detection in Bipartite Networks: Algorithms and Case studies , 2016 .

[51]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[52]  S. Lehmann,et al.  Biclique communities. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  O. N. Garcia,et al.  Knowledge and Data Engineering: An Outlook , 1989 .

[54]  John Riedl,et al.  Influence in Ratings-Based Recommender Systems: An Algorithm-Independent Approach , 2005, SDM.

[55]  Vladimir Vlassov,et al.  High-Level Programming Abstractions for Distributed Graph Processing , 2016, IEEE Transactions on Knowledge and Data Engineering.

[56]  Reynold Xin,et al.  GraphFrames: an integrated API for mixing graph and relational queries , 2016, GRADES '16.

[57]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[58]  S. Wasserman,et al.  Models and methods in social network analysis , 2005 .

[59]  Xing-yuan Wang,et al.  Detecting one-mode communities in bipartite networks by bipartite clustering triangular , 2016 .

[60]  Yogesh L. Simmhan,et al.  Scalable Graph Processing Frameworks , 2018, ACM Comput. Surv..

[61]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Dimitris Plexousakis,et al.  Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents , 2005, Eng. Appl. Artif. Intell..