A high-order discontinuous Galerkin multigrid solver for aerodynamic applications

Results are presented from the development of a high-order discontinuous Galerkin finite element solver using p-multigrid with line Jacobi smoothing. The line smoothing algorithm is presented for unstructured meshes, and p-multigrid is outlined for the nonlinear Euler equations of gas dynamics. Analysis of 2-D advection shows the improved performance of line implicit versus block implicit relaxation. Through a mesh refinement study, the accuracy of the discretization is determined to be the optimal O(hp+1) for smooth problems in 2-D and 3-D. The multigrid convergence rate is found to be independent of the interpolation order but weakly dependent on the grid size. Timing studies for each problem indicate that higher order is advantageous over grid refinement when high accuracy is required. Finally, parallel versions of the 2-D and 3-D solvers demonstrate close to ideal coarse-grain scalability. Thesis Supervisor: David L. Darmofal Title: Associate Professor

[1]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[2]  Dimitri J. Mavriplis,et al.  Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers , 2004 .

[3]  Bram van Leer,et al.  Upwind-difference methods for aerodynamic problems governed by the Euler equations , 1985 .

[4]  Venkat Venkatakrishnan,et al.  Higher Order Schemes for the Compressible Navier-Stokes Equations , 2003 .

[5]  George Em Karniadakis,et al.  A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .

[6]  Edward N. Tinoco,et al.  Data Summary from Second AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .

[7]  David L. Darmofal,et al.  Algebraic multigrid for stabilized finite element discretizations of the Navier?Stokes equations , 2004 .

[8]  David L. Darmofal,et al.  Local Preconditioning: Manipulating Mother Nature to Fool Father Time , 1998 .

[9]  W. K. Anderson,et al.  Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids , 1995 .

[10]  A. Brandt Guide to multigrid development , 1982 .

[11]  David E. Keyes,et al.  Parallel implementation of the discontinuous Galerkin method , 1999 .

[12]  Edward N. Tinoco,et al.  Summary of Data from the Second AIAA CFD Drag Prediction Workshop (Invited) , 2004 .

[13]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[14]  George Em Karniadakis,et al.  Multilevel Parallelization Models for High-Order CFD , 2004 .

[15]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[16]  D. Mavriplis An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .

[17]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[18]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[19]  Raytcho D. Lazarov,et al.  Higher-order finite element methods , 2005, Math. Comput..

[20]  Steven M. Klausmeyer,et al.  Data summary from the first AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .

[21]  A. Jameson Solution of the Euler equations for two dimensional transonic flow by a multigrid method , 1983 .

[22]  G. Volpe On the use and the accuracy of compressible flow codes at low Mach numbers , 1991 .

[23]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[24]  David L. Darmofal,et al.  The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm , 2001 .

[25]  Michael B. Giles,et al.  Preconditioned Multigrid Methods for Compressible Flow Calculations on Stretched Meshes , 1997 .

[26]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[27]  John C. Vassberg,et al.  Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations , 2003 .

[28]  William Gropp,et al.  High-performance parallel implicit CFD , 2001, Parallel Comput..

[29]  A. Jameson Computational algorithms for aerodynamic analysis and design , 1993 .

[30]  David L. Darmofal,et al.  The Importance of Eigenvectors for Local Preconditioners of the Euler Equations , 1995 .

[31]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[32]  A Jameson,et al.  CALCULATION OF IN VISCID TRANSONIC FLOW OVER A COMPLETE AIRCRAFT , 1986 .

[33]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[34]  Jean-Antoine Désidéri,et al.  Convergence Analysis of the Defect-Correction Iteration for Hyperbolic Problems , 1995, SIAM J. Sci. Comput..

[35]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[36]  Philip L. Roe,et al.  A comparison of numerical flux formulas for the Euler and Navier-Stokes equations , 1987 .

[37]  Anthony T. Patera,et al.  Spectral element multigrid. I. Formulation and numerical results , 1987 .

[38]  D. Mavriplis Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes , 1987 .

[39]  Andrea Crivellini,et al.  A Three-Dimensional Parallel Discontinuous Galerkin Solver for Acoustic Propagation Studies , 2003 .

[40]  D. Mavriplis Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes , 1997 .

[41]  F. Bassi,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2 D Euler Equations , 1998 .

[42]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[43]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[44]  S. Allmaras Analysis of semi-implicit preconditioners for multigrid solution of the 2-D compressible Navier-Stokes equations , 1995 .

[45]  Brian T. Helenbrook,et al.  Analysis of ``p''-Multigrid for Continuous and Discontinuous Finite Element Discretizations , 2003 .

[46]  Achi Brandt,et al.  Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD , 1998 .

[47]  S. Pirzadeh,et al.  Large-Scale Parallel Unstructured Mesh Computations for Three-Dimensional High-Lift Analysis , 1999 .

[48]  Philip L. Roe,et al.  Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .

[49]  Dimitri J. Mavriplis,et al.  AIAA 99 – 0537 LARGE-SCALE PARALLEL UNSTRUCTURED MESH COMPUTATIONS FOR 3 D HIGH-LIFT ANALYSIS , 1999 .

[50]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[51]  Dimitri J. Mavriplis,et al.  Multigrid solution of the Navier-Stokes equations on triangular meshes , 1989 .