A high-order discontinuous Galerkin multigrid solver for aerodynamic applications
暂无分享,去创建一个
[1] B. Leer,et al. Flux-vector splitting for the Euler equations , 1997 .
[2] Dimitri J. Mavriplis,et al. Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers , 2004 .
[3] Bram van Leer,et al. Upwind-difference methods for aerodynamic problems governed by the Euler equations , 1985 .
[4] Venkat Venkatakrishnan,et al. Higher Order Schemes for the Compressible Navier-Stokes Equations , 2003 .
[5] George Em Karniadakis,et al. A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .
[6] Edward N. Tinoco,et al. Data Summary from Second AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .
[7] David L. Darmofal,et al. Algebraic multigrid for stabilized finite element discretizations of the Navier?Stokes equations , 2004 .
[8] David L. Darmofal,et al. Local Preconditioning: Manipulating Mother Nature to Fool Father Time , 1998 .
[9] W. K. Anderson,et al. Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids , 1995 .
[10] A. Brandt. Guide to multigrid development , 1982 .
[11] David E. Keyes,et al. Parallel implementation of the discontinuous Galerkin method , 1999 .
[12] Edward N. Tinoco,et al. Summary of Data from the Second AIAA CFD Drag Prediction Workshop (Invited) , 2004 .
[13] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[14] George Em Karniadakis,et al. Multilevel Parallelization Models for High-Order CFD , 2004 .
[15] P. Roe. CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .
[16] D. Mavriplis. An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .
[17] I. Doležel,et al. Higher-Order Finite Element Methods , 2003 .
[18] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[19] Raytcho D. Lazarov,et al. Higher-order finite element methods , 2005, Math. Comput..
[20] Steven M. Klausmeyer,et al. Data summary from the first AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .
[21] A. Jameson. Solution of the Euler equations for two dimensional transonic flow by a multigrid method , 1983 .
[22] G. Volpe. On the use and the accuracy of compressible flow codes at low Mach numbers , 1991 .
[23] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[24] David L. Darmofal,et al. The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm , 2001 .
[25] Michael B. Giles,et al. Preconditioned Multigrid Methods for Compressible Flow Calculations on Stretched Meshes , 1997 .
[26] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[27] John C. Vassberg,et al. Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations , 2003 .
[28] William Gropp,et al. High-performance parallel implicit CFD , 2001, Parallel Comput..
[29] A. Jameson. Computational algorithms for aerodynamic analysis and design , 1993 .
[30] David L. Darmofal,et al. The Importance of Eigenvectors for Local Preconditioners of the Euler Equations , 1995 .
[31] William L. Briggs,et al. A multigrid tutorial , 1987 .
[32] A Jameson,et al. CALCULATION OF IN VISCID TRANSONIC FLOW OVER A COMPLETE AIRCRAFT , 1986 .
[33] David L. Darmofal,et al. p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .
[34] Jean-Antoine Désidéri,et al. Convergence Analysis of the Defect-Correction Iteration for Hyperbolic Problems , 1995, SIAM J. Sci. Comput..
[35] E. Turkel,et al. Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .
[36] Philip L. Roe,et al. A comparison of numerical flux formulas for the Euler and Navier-Stokes equations , 1987 .
[37] Anthony T. Patera,et al. Spectral element multigrid. I. Formulation and numerical results , 1987 .
[38] D. Mavriplis. Multigrid solution of the two-dimensional Euler equations on unstructured triangular meshes , 1987 .
[39] Andrea Crivellini,et al. A Three-Dimensional Parallel Discontinuous Galerkin Solver for Acoustic Propagation Studies , 2003 .
[40] D. Mavriplis. Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes , 1997 .
[41] F. Bassi,et al. High-Order Accurate Discontinuous Finite Element Solution of the 2 D Euler Equations , 1998 .
[42] S. McCormick,et al. A multigrid tutorial (2nd ed.) , 2000 .
[43] A. Jameson,et al. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .
[44] S. Allmaras. Analysis of semi-implicit preconditioners for multigrid solution of the 2-D compressible Navier-Stokes equations , 1995 .
[45] Brian T. Helenbrook,et al. Analysis of ``p''-Multigrid for Continuous and Discontinuous Finite Element Discretizations , 2003 .
[46] Achi Brandt,et al. Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD , 1998 .
[47] S. Pirzadeh,et al. Large-Scale Parallel Unstructured Mesh Computations for Three-Dimensional High-Lift Analysis , 1999 .
[48] Philip L. Roe,et al. Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .
[49] Dimitri J. Mavriplis,et al. AIAA 99 – 0537 LARGE-SCALE PARALLEL UNSTRUCTURED MESH COMPUTATIONS FOR 3 D HIGH-LIFT ANALYSIS , 1999 .
[50] S. Rebay,et al. High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .
[51] Dimitri J. Mavriplis,et al. Multigrid solution of the Navier-Stokes equations on triangular meshes , 1989 .