A new approach to solve the inverse scattering problem for waves: combining the TRAC and the adaptive inversion methods

The aim of this paper is to propose a new method to solve the inverse scattering problem. This method works directly in the time-dependent domain, using the wave equation and proceeds in two steps. The first step is the time-reversed absorbing condition (TRAC) method to reconstruct and regularize the signal and to reduce the computational domain. The second step is the adaptive inversion method to solve the inverse problem from the TRAC data, by using basis and mesh adaptation. This strategy allows us to recover the position, the shape and the properties of the scatterer in a precise and robust manner.

[1]  Michael V. Klibanov,et al.  Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem , 2010 .

[2]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[3]  Peter Monk,et al.  The determination of boundary coefficients from far field measurements , 2010 .

[4]  M Fink Imaging through inhomogeneous media using time reversal mirrors , 1991 .

[5]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[6]  Maya de Buhan,et al.  Un résultat de stabilité pour la récupération d'un paramètre du système de la viscoélasticité 3D , 2009 .

[7]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[8]  Pedro Serranho,et al.  A hybrid method for inverse scattering for shape and impedance , 2006 .

[9]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[10]  Victor Isakov,et al.  On uniqueness in th invese transmission scattering problem , 1990 .

[11]  J. Devaney,et al.  1 Super-resolution Processing of Multi-static Data Using Time Reversal and MUSIC A , 2000 .

[12]  Mathias Fink,et al.  Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media , 1994 .

[13]  Stanley Osher,et al.  A survey on level set methods for inverse problems and optimal design , 2005, European Journal of Applied Mathematics.

[14]  Peter Monk,et al.  Recent Developments in Inverse Acoustic Scattering Theory , 2000, SIAM Rev..

[15]  Eli Turkel,et al.  On surface radiation conditions for an ellipse , 2010, J. Comput. Appl. Math..

[16]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Maxwell's Equations , 1998 .

[17]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[18]  Jun Du,et al.  Image enhancement with wave-equation redatuming: application to GPR data collected at public transportation sites , 2007 .

[19]  Houssem Haddar,et al.  Application of the linear sampling method to identify cracks with impedance boundary conditions , 2013 .

[20]  Houssem Haddar,et al.  An improved time domain linear sampling method for Robin and Neumann obstacles , 2014 .

[21]  Simon N. Chandler-Wilde,et al.  A Time Domain Point Source Method for Inverse Scattering by Rough Surfaces , 2005, Computing.

[22]  V. Zvyagin,et al.  Attractors of equations of non-Newtonian fluid dynamics , 2014 .

[23]  Michael V. Klibanov,et al.  Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems , 2012 .

[24]  Margaret Cheney,et al.  The Linear Sampling Method and the MUSIC Algorithm , 2001 .

[25]  Masaru Ikehata,et al.  Reconstruction of an obstacle from the scattering amplitude at a fixed frequency , 1998 .

[26]  Xavier Antoine,et al.  Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape , 1999 .

[27]  Eli Turkel,et al.  Time Reversed Absorbing Conditions , 2010 .

[28]  Mathias Fink,et al.  Time‐reversal imaging of seismic sources and application to the great Sumatra earthquake , 2006 .

[29]  Armin Lechleiter,et al.  The factorization method is independent of transmission eigenvalues , 2009 .

[30]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[31]  M. Klibanov,et al.  Iterative method for multi-dimensional inverse scattering problems at fixed frequencies , 1994 .

[32]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[33]  Rainer Kress,et al.  UNIQUENESS IN INVERSE OBSTACLE SCATTERING , 2002 .

[34]  Lucie Baudouin,et al.  A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem , 2007, 0804.1709.

[35]  Masahiro Yamamoto,et al.  Global Lipschitz stability in an inverse hyperbolic problem by interior observations , 2001 .

[36]  Rainer Kress,et al.  Uniqueness in inverse obstacle scattering (acoustics) , 1993 .

[37]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[38]  Fioralba Cakoni,et al.  Qualitative Methods in Inverse Scattering Theory: An Introduction , 2005 .

[39]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[40]  Mickael Tanter,et al.  Multiwave imaging and super resolution , 2010 .

[41]  Eli Turkel,et al.  Time-reversed absorbing condition: application to inverse problems , 2011 .

[42]  John R. Berryhill,et al.  Wave-equation datuming , 1979 .

[43]  Roland Potthast,et al.  A survey on sampling and probe methods for inverse problems , 2006 .

[44]  Mathias Fink,et al.  Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method , 1999 .

[45]  Frédéric Nataf,et al.  Time-reversed absorbing conditions in the partial aperture case , 2012 .

[46]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[47]  Christophe Hazard,et al.  Multiple scattering of acoustic waves by small sound-soft obstacles in two dimensions: Mathematical justification of the Foldy–Lax model , 2013 .

[48]  Maya de Buhan,et al.  Logarithmic stability in determination of a 3D viscoelastic coefficient and a numerical example , 2010 .

[49]  Eli Turkel,et al.  Local absorbing boundary conditions for elliptical shaped boundaries , 2008, J. Comput. Phys..

[50]  Michael V. Klibanov,et al.  Lipschitz stability of an inverse problem for an acoustic equation , 2006 .

[51]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .