The classification of almost simple $\tfrac{3}2$-transitive groups

A finite transitive permutation group is said to be 3/2-transitive if all the nontrivial orbits of a point stabilizer have the same size greater than 1. Examples include the 2-transitive groups, Frobenius groups and several other less obvious ones. We prove that 3/2-transitive groups are either affine or almost simple, and classify the latter. One of the main steps in the proof is an arithmetic result on the subdegrees of groups of Lie type in characteristic $p$: with some explicitly listed exceptions, every primitive action of such a group is either 2-transitive, or has a subdegree divisible by $p$.

[1]  P. Cameron FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .

[2]  P. B. Kleidman The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ8+(q) and of their automorphism groups , 1987 .

[3]  Áron Bereczky,et al.  Maximal Overgroups of Singer Elements in Classical Groups , 2000 .

[4]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[5]  Characterisations of some 3/2-transitive groups , 1971 .

[6]  Gary M. Seitz,et al.  SUBGROUPS OF MAXIMAL RANK IN FINITE EXCEPTIONAL GROUPS OF LIE TYPE , 1992 .

[7]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[8]  Gary M. Seitz,et al.  Flag-Transitive Subgroups of Chevalley Groups , 1973 .

[9]  Gary M. Seitz,et al.  Fixed point spaces in actions of exceptional algebraic groups , 2002 .

[10]  Mikhail E. Muzychuk,et al.  On pseudocyclic association schemes , 2009, Ars Math. Contemp..

[11]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[12]  R. Carter THE SUBGROUP STRUCTURE OF THE FINITE CLASSICAL GROUPS (London Mathematical Society Lecture Note Series 129) , 1991 .

[13]  Meinolf Geck,et al.  Finite groups of Lie type , 1985 .

[14]  R. Wilson,et al.  Orbit invariants and an application to the Baby monster , 2011 .

[15]  R. Howlett,et al.  On the degrees of Steinberg characters of Chevalley groups , 1974 .

[16]  John D. Dixon Permutation representations and rational irreducibility , 2005 .

[17]  Aner Shalev,et al.  Simple groups, permutation groups, and probability , 1999 .

[18]  Kenzo Mizuno The Conjugate Classes of Unipotent Elements of the Chevalley Groups $E_7$ and $E_8$ , 1980 .

[19]  Bomshik Chang,et al.  The conjugate classes of Chevalley groups of type (G2) , 1968 .

[20]  C. Praeger,et al.  On minimal subdegrees of finite primitive permutation groups , 2006 .

[21]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[22]  Peter J. Cameron,et al.  Permutation Groups: Frontmatter , 1999 .

[23]  R. Wilson The classical groups , 2009 .

[24]  Martin W. Liebeck,et al.  The Affine Permutation Groups of Rank Three , 1987 .

[25]  R. Lawther,et al.  On the Actions of Finite Groups of Lie Type on the Cosets of Subfield Subgroups and their Twisted Analogues , 1989 .

[26]  W. Kantor,et al.  The 2-transitive permutation representa-tions of the finite Chevalley groups , 1976 .

[27]  M. Liebeck,et al.  On the 2‐Closures of Finite Permutation Groups , 1988 .

[28]  Timothy C. Burness,et al.  Base sizes for sporadic simple groups , 2010 .

[29]  Primitive Permutation Groups with a Common Suborbit, and Edge‐Transitive Graphs , 2002 .

[30]  Timothy C. Burness Fixed point ratios in actions of finite classical groups, I , 2006 .

[31]  John McKay,et al.  On Transitive Permutation Groups , 1998, LMS J. Comput. Math..

[32]  Robert M. Guralnick,et al.  On base sizes for symmetric groups , 2011 .

[33]  Derek F. Holt,et al.  Constructing Maximal Subgroups of Classical Groups , 2005, LMS J. Comput. Math..

[34]  Timothy C. Burness Fixed point ratios in actions of finite classical groups, III , 2007 .

[35]  H. Enomoto The conjugacy classes of Chevalley groups of type ($G_2$) over finite fields of characteristic 2 or 3 , 1970 .

[36]  C. Hering Transitive linear groups and linear groups which contain irreducible subgroups of prime order , 1974 .

[37]  R. Carter,et al.  Conjugacy classes in the Weyl group , 1970 .

[38]  P. Zieschang Theorems like Wielandt's , 1992 .

[39]  Harold N. Ward,et al.  On Ree’s series of simple groups , 1966 .

[40]  Arjeh M. Cohen,et al.  The Local Maximal Subgroups of Exceptional Groups of Lie Type, Finite and Algebraic , 1992 .

[41]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups , 1983 .

[42]  Solvable 32-transitive permutation groups , 1967 .

[43]  Gary M. Seitz,et al.  Fixed point ratios in actions of finite exceptional groups of lie type. , 2002 .

[44]  Michael Aschbacher,et al.  Corrections to “Involutions in Chevalley groups over fields of even order” , 1976, Nagoya Mathematical Journal.

[45]  Aner Shalev,et al.  Base sizes for simple groups and a conjecture of Cameron , 2009 .

[46]  J. P. James Two point stabilisers of partition actions of linear groups , 2006 .

[47]  Simon P. Norton,et al.  The maximal subgroups of F4(2) and its automorphism group , 1989 .

[48]  Donald Passman Exceptional $3/2$-transitive permutation groups. , 1969 .

[49]  Gary M. Seitz Flag-Transitive Subgroups of Chevalley Groups , 1973 .

[50]  Jan Saxl,et al.  On Finite Linear Spaces with Almost Simple Flag-Transitive Automorphism Groups , 2002, J. Comb. Theory, Ser. A.

[51]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[52]  Eiichi Bannai,et al.  Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points , 1990, J. Comb. Theory, Ser. A.

[53]  Christoph Hering,et al.  Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II , 1985 .

[54]  Gary M. Seitz,et al.  On finite subgroups of exceptional algebraic groups , 1999 .

[55]  Solvable half-transitive automorphism groups , 1967 .

[56]  Gary M. Seitz,et al.  Subgroups generated by root elements in groups of Lie type , 1994 .

[57]  P. Cameron Permutation groups , 1996 .

[58]  F. G Timmesfeld,et al.  Groups generated by root-involutions. II , 1975 .

[59]  D. G. Higman,et al.  Geometric $ABA$-groups , 1961 .

[60]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .

[61]  Martin W. Liebeck,et al.  The Finite Primitive Permutation Groups of Rank Three , 1986 .

[62]  Gary M. Seitz,et al.  A survey of maximal subgroups of exceptional groups of Lie type , 2002 .

[63]  Cheryl E. Praeger,et al.  An inequality for tactical configurations , 1996 .

[64]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[65]  L. Kovács Primitive Subgroups of Wreath Products in Product Action , 1989 .

[66]  Martin W. Liebeck,et al.  The Primitive Permutation Groups of Odd Degree , 1985 .

[67]  M. Liebeck,et al.  Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras , 2012 .