Machine learning techniques for state recognition and auto-tuning in quantum dots

[1]  Dieter Schuh,et al.  Tuning Methods for Semiconductor Spin Qubits , 2018, Physical Review Applied.

[2]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[3]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[4]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[5]  B. Hensen,et al.  Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout , 2017, Nature Communications.

[6]  Andrew S. Dzurak,et al.  Logical Qubit in a Linear Array of Semiconductor Quantum Dots , 2016, Physical Review X.

[7]  Charu C. Aggarwal,et al.  Neural Networks and Deep Learning , 2018, Springer International Publishing.

[8]  C. Felser,et al.  Effect of Pt substitution on the magnetocrystalline anisotropy of Ni2MnGa: A competition between chemistry and elasticity , 2017 .

[9]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[10]  W. Spakman,et al.  Pacific plate motion change caused the Hawaiian-Emperor Bend , 2017, Nature Communications.

[11]  F. Schmidt-Kaler,et al.  Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation , 2017, 1705.02771.

[12]  Charles M. Marcus,et al.  Symmetric Operation of the Resonant Exchange Qubit , 2017, 1704.01298.

[13]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[14]  C. Felser,et al.  Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compoundsMn3X(M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[16]  Gerhard Klimeck,et al.  Silicon quantum processor with robust long-distance qubit couplings , 2015, Nature Communications.

[17]  Eyob A. Sete,et al.  A functional architecture for scalable quantum computing , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[18]  Saeed Fallahi,et al.  High-fidelity entangling gate for double-quantum-dot spin qubits , 2016, 1608.04258.

[19]  J. R. Petta,et al.  Scalable gate architecture for a one-dimensional array of semiconductor spin qubits , 2016, 1607.07025.

[20]  M. Sawicki,et al.  Determining Curie temperature of (Ga,Mn)As samples based on electrical transport measurements: Low Curie temperature case , 2016, 1606.05132.

[21]  M. Saffman Quantum computing with atomic qubits and Rydberg interactions: progress and challenges , 2016, 1605.05207.

[22]  C. Greene,et al.  Mapping trilobite state signatures in atomic hydrogen , 2016, 1603.02990.

[23]  P. T. Eendebak,et al.  Computer-automated tuning of semiconductor double quantum dots into the single-electron regime , 2016, 1603.02274.

[24]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[25]  J. G. Contreras,et al.  Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions at sqrt[s_{NN}]=5.02  TeV. , 2015, Physical review letters.

[26]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[27]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[28]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[29]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Liping Gao,et al.  The long-term maintenance of a resistance polymorphism through diffuse interactions , 2014, Nature.

[31]  M. Manfra,et al.  Full control of quadruple quantum dot circuit charge states in the single electron regime , 2014, 1404.6047.

[32]  S. Altendorf,et al.  Growth and characterization of Sc-doped EuO thin films , 2014 .

[33]  F. Schmidt-Kaler,et al.  Controlling the transport of an ion: classical and quantum mechanical solutions , 2013, 1312.4156.

[34]  Giorgio Fagiolo,et al.  Enhanced network reconstruction from irreducible local information , 2013, ArXiv.

[35]  F. Leupold,et al.  Quantum control of the motional states of trapped ions through fast switching of trapping potentials , 2012, 1208.3986.

[36]  N. Zimmerman,et al.  Fabrication and Electrical Characterization of Fully CMOS-Compatible Si Single-Electron Devices , 2012, IEEE Transactions on Electron Devices.

[37]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[38]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[39]  F. Schmidt-Kaler,et al.  Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap , 2007, 0712.3249.

[40]  D. Janzing,et al.  A single-shot measurement of the energy of product states in a translation invariant spin chain can replace any quantum computation , 2007, 0710.1615.

[41]  Time-resolved ellipticity gating of high-order harmonic emission , 2004 .

[42]  Yasuo Takahashi,et al.  Current quantization due to single-electron transfer in Si-wire charge-coupled devices , 2004 .

[43]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[44]  S. Tarucha,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[45]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[46]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[47]  E. Merzbacher,et al.  Quantum Mechanics, 3rd Edition , 1997 .

[48]  N. H. March,et al.  Theory of the inhomogeneous electron gas , 1983 .

[49]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.