Production and characterisation of new bioresorbable radiopaque Mg–Zn–Y alloy to improve X-ray visibility of polymeric scaffolds

[1]  N. Dutta,et al.  Magnesium Alloys With Tunable Interfaces as Bone Implant Materials , 2020, Frontiers in Bioengineering and Biotechnology.

[2]  N. Bhatnagar,et al.  Fabrication and characterization of PLLA/Mg composite tube as the potential bioresorbable/biodegradable stent(BRS) , 2020, Materialia.

[3]  Surendra Singh Gaur,et al.  Development of hybrid shape memory polyurethane composites for endovascular applications , 2020 .

[4]  C. Shuai,et al.  nMgO-incorporated PLLA bone scaffolds: Enhanced crystallinity and neutralized acidic products , 2019, Materials & Design.

[5]  A. Bayati,et al.  Investigation of mechanical properties, formability, and anisotropy of dual phase Mg–7Li–1Zn , 2019, Materials Research Express.

[6]  O. Karcioglu,et al.  Poisoning in the Modern World - New Tricks for an Old Dog? , 2019 .

[7]  T. Kwak,et al.  Mechanical properties and Hall-Petch relationship of the extruded Mg-Zn-Y alloys with different volume fractions of icosahedral phase , 2019, Journal of Alloys and Compounds.

[8]  M. Melancon,et al.  Radiopaque nano and polymeric materials for atherosclerosis imaging, embolization and other catheterization procedures , 2018, Acta pharmaceutica Sinica. B.

[9]  Hyoun‐Ee Kim,et al.  Innovative micro-textured hydroxyapatite and poly(l-lactic)-acid polymer composite film as a flexible, corrosion resistant, biocompatible, and bioactive coating for Mg implants. , 2017, Materials science & engineering. C, Materials for biological applications.

[10]  S. Saptarshi,et al.  Biocompatibility and biodegradation studies of a commercial zinc alloy for temporary mini-implant applications , 2017, Scientific Reports.

[11]  G. Stone,et al.  6-Month Clinical and Angiographic Outcomes of a Novel Radiopaque Sirolimus-Eluting Bioresorbable Vascular Scaffold: The FANTOM II Study. , 2017, JACC. Cardiovascular interventions.

[12]  Haw-Ming Huang,et al.  In Vitro Biocompatibility, Radiopacity, and Physical Property Tests of Nano-Fe3O4 Incorporated Poly-l-lactide Bone Screws , 2017, Polymers.

[13]  R. Benavente,et al.  Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion. , 2017, Materials science & engineering. C, Materials for biological applications.

[14]  Guang-hong Zhou,et al.  Mg alloy rod reinforced biodegradable poly-lactic acid composite for load bearing bone replacement , 2017 .

[15]  R. Benavente,et al.  In vitro degradation of biodegradable polylactic acid/magnesium composites: Relevance of Mg particle shape. , 2016, Acta biomaterialia.

[16]  S. Al-zahrani,et al.  Characterization of poly(lactic acid)/hydroxyapatite prepared by a solvent-blending technique , 2015 .

[17]  M. Kannan,et al.  Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium–zinc binary alloys , 2015 .

[18]  B. Youan,et al.  Evaluation of degradation kinetics and physicochemical stability of tenofovir. , 2015, Drug testing and analysis.

[19]  C. Hamm,et al.  Current status of bioresorbable scaffolds in the treatment of coronary artery disease. , 2014, Journal of the American College of Cardiology.

[20]  Y. Lu Microstructure and degradation behaviour of Mg-Zn(-Ca) alloys , 2014 .

[21]  Zhigang Xu,et al.  Recent advances on the development of magnesium alloys for biodegradable implants. , 2014, Acta biomaterialia.

[22]  Ke Yang,et al.  Fabrication and evaluation of bioresorbable PLLA/magnesium and PLLA/magnesium fluoride hybrid composites for orthopedic implants , 2014 .

[23]  M. Jawaid,et al.  Epoxidized natural rubber toughened polylactic acid/talc composites: Mechanical, thermal, and morphological properties , 2014 .

[24]  Patrick W Serruys,et al.  Bioresorbable scaffolds: current knowledge, potentialities and limitations experienced during their first clinical applications. , 2013, International journal of cardiology.

[25]  J. Drelich,et al.  Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents , 2013, Advanced materials.

[26]  D. Shum-Tim,et al.  Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. , 2013, Acta biomaterialia.

[27]  Daokui Xu,et al.  Effects of icosahedral phase formation on the microstructure and mechanical improvement of Mg alloys: A review , 2012 .

[28]  Yufeng Zheng,et al.  Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank's solution , 2012 .

[29]  Yufeng Zheng,et al.  In vitro degradation performance and biological response of a Mg-Zn-Zr alloy , 2011 .

[30]  K. Hagihara,et al.  Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy , 2011 .

[31]  M. Leeflang,et al.  In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys , 2010, Journal of materials science. Materials in medicine.

[32]  D. Mantovani,et al.  Developments in metallic biodegradable stents. , 2010, Acta biomaterialia.

[33]  R. Willumeit,et al.  Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. , 2010, Acta biomaterialia.

[34]  M. Becker,et al.  Impact of polymer-bound iodine on fibronectin adsorption and osteoblast cell morphology in radiopaque medical polymers: tyrosine-derived polycarbonate blends as a model system. , 2009, Biomacromolecules.

[35]  C. Xie,et al.  In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy , 2009 .

[36]  L. Liu,et al.  Influence of Higher Zn/Y Ratio on the Microstructure and Mechanical Properties of Mg-Zn-Y-Zr Alloys , 2009 .

[37]  W. Liang,et al.  Investigation on the icosahedral quasicrystal phase in Mg70.8Zn28Nd1.2 alloy , 2009 .

[38]  Z. Ma,et al.  Microstructural evolution and mechanical properties of friction stir welded Mg–Zn–Y–Zr alloy , 2007 .

[39]  Gencang Yang,et al.  Solidification of Mg-28%Zn-2%Y alloy involving icosahedral quasicrystal phase , 2007 .

[40]  L. Koole,et al.  New acrylic microspheres for arterial embolization: combining radiopacity for precise localization with immobilized thrombin to trigger local blood coagulation. , 2007, Biomaterials.

[41]  F. Alexis,et al.  Some insight into hydrolytic scission mechanisms in bioerodible polyesters , 2006 .

[42]  D. Bae,et al.  Thermally stable quasicrystalline phase in a superplastic Mg–Zn–Y–Zr alloy , 2006 .

[43]  Yanping Zhu,et al.  Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg–Zn–Y–Zr alloys , 2004 .

[44]  U. Ramamurty,et al.  Variability in mechanical properties of a metal foam , 2004 .

[45]  M. Nakamura,et al.  Quasicrystal strengthened Mg-Zn-Y alloys by extrusion , 2003 .

[46]  Y. Kawamura,et al.  Microstructures and Tensile Properties of Mg-Zn-Y Alloys Containing Quasicrystals , 2003 .

[47]  D. Bae,et al.  Deformation behavior of Mg–Zn–Y alloys reinforced by icosahedral quasicrystalline particles , 2002 .

[48]  A. Tsai,et al.  The Zn-Mg-Y phase diagram involving quasicrystals , 2000 .

[49]  A. Singh,et al.  Hexagonal superstructures in the Zn–Mg–rare-earth alloys , 1999 .

[50]  A. Inoue,et al.  Stoichiometric icosahedral phase in the Zn–Mg–Y system , 1997 .

[51]  Zhiping Luo,et al.  On the stable quasicrystals in slowly cooled Mg-Zn-Y alloys , 1995 .

[52]  W C de Bruijn,et al.  In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles. , 1995, Biomaterials.

[53]  A. Inoue,et al.  Highly ordered structure of icosahedral quasicrystals in Zn-Mg-RE (RE ≡ rare earth metals) systems , 1994 .

[54]  F. Kasten,et al.  Radiopaque acrylic resins containing miscible heavy-metal compounds. , 1990, Dental materials : official publication of the Academy of Dental Materials.

[55]  W. Hendee,et al.  X-ray equipment performance: a 3.5 year case history. , 1981, AJR. American journal of roentgenology.

[56]  E. Piva,et al.  Addition of nanoparticles for development of radiopaque dental adhesives , 2018 .

[57]  Jianbin Chao,et al.  Synthesis, characterization and free radical scavenging activity of apigenin with or without magnesium(II) - , 2014 .

[58]  Jack Baniel,et al.  Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications. , 2007, Biomaterials.

[59]  D. Bae,et al.  High Strength Mg-Zn-Y Alloy Containing Quasicrystalline Particles. , 2001 .

[60]  J. Verdu,et al.  Lifetime prediction in the hydrolytic ageing of polyesters , 1995 .