Molecular Systems Biology 5; Article number 291; doi:10.1038/msb.2009.46 Citation: Molecular Systems Biology 5:291

Genome‐wide expression profiling has aided the understanding of the molecular basis of neuronal diversity, but achieving broad functional insight remains a considerable challenge. Here, we perform the first systems‐level analysis of microarray data from single neuronal populations using weighted gene co‐expression network analysis to examine how neuronal transcriptome organization relates to neuronal function and diversity. We systematically validate network predictions using published proteomic and genomic data. Several network modules of co‐expressed genes correspond to interneuron development programs, in which the hub genes are known to be critical for interneuron specification. Other co‐expression modules relate to fundamental cellular functions, such as energy production, firing rate, trafficking, and synapses, suggesting that fundamental aspects of neuronal diversity are produced by quantitative variation in basic metabolic processes. We identify two transcriptionally distinct mitochondrial modules and demonstrate that one corresponds to mitochondria enriched in neuronal processes and synapses, whereas the other represents a population restricted to the soma. Finally, we show that galectin‐1 is a new interneuron marker, and we validate network predictions in vivo using Rgs4 and Dlx1/2 knockout mice. These analyses provide a basis for understanding how specific aspects of neuronal phenotypic diversity are organized at the transcriptional level.

[1]  S. Horvath,et al.  Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks , 2006, BMC Genomics.

[2]  J. Geddes,et al.  Synaptic Mitochondria Are More Susceptible to Ca2+Overload than Nonsynaptic Mitochondria* , 2006, Journal of Biological Chemistry.

[3]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[4]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[5]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[6]  M. Calcagnotto,et al.  Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy , 2005, Nature Neuroscience.

[7]  S. Horvath,et al.  Functional organization of the transcriptome in human brain , 2008, Nature Neuroscience.

[8]  Hanno Steen,et al.  Development of human protein reference database as an initial platform for approaching systems biology in humans. , 2003, Genome research.

[9]  G. Church,et al.  Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset , 2005, Genome Biology.

[10]  Michael E Phelps,et al.  Systems Biology and New Technologies Enable Predictive and Preventative Medicine , 2004, Science.

[11]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Horvath,et al.  A General Framework for Weighted Gene Co-Expression Network Analysis , 2005, Statistical applications in genetics and molecular biology.

[13]  D. Geschwind,et al.  A Systems Level Analysis of Transcriptional Changes in Alzheimer's Disease and Normal Aging , 2008, The Journal of Neuroscience.

[14]  Gábor Szabó,et al.  Preferential origin and layer destination of GAD65-GFP cortical interneurons. , 2004, Cerebral cortex.

[15]  D. Eisenstat,et al.  Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation. , 2004, Nucleic acids research.

[16]  Andy M. Yip,et al.  Gene network interconnectedness and the generalized topological overlap measure , 2007, BMC Bioinformatics.

[17]  J. Rubenstein,et al.  Developmental functions of the Distal-less/Dlx homeobox genes. , 2002, Development.

[18]  Carol Dudley,et al.  Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Xiaohui S. Xie,et al.  A Mammalian Organelle Map by Protein Correlation Profiling , 2006, Cell.

[20]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[21]  Steve Horvath,et al.  Network neighborhood analysis with the multi-node topological overlap measure , 2007, Bioinform..

[22]  Leyuan Shi,et al.  Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. , 1997, Science.

[23]  M. Gerstein,et al.  Relating whole-genome expression data with protein-protein interactions. , 2002, Genome research.

[24]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[25]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[26]  P. Bonaventure,et al.  Nuclei and subnuclei gene expression profiling in mammalian brain , 2002, Brain Research.

[27]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[28]  W. Dobyns,et al.  Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans , 2002, Nature Genetics.

[29]  G. Ladds,et al.  Differential effects of RGS proteins on Gαq and Gα11 activity , 2007 .

[30]  R. Aebersold,et al.  Proteomic analysis of synaptosomes using isotope‐coded affinity tags and mass spectrometry , 2005, Proteomics.

[31]  Eric E. Schadt,et al.  Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice , 2006, Mammalian Genome.

[32]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[33]  K. Heidenreich,et al.  Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival , 2004, Molecular Neurobiology.

[34]  Jun Dong,et al.  Geometric Interpretation of Gene Coexpression Network Analysis , 2008, PLoS Comput. Biol..

[35]  G. Tamás,et al.  Lighting the chandelier: new vistas for axo-axonic cells , 2005, Trends in Neurosciences.

[36]  N. Šestan,et al.  Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Stein,et al.  NeuroD: the predicted and the surprising. , 2004, Molecules and cells.

[38]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[39]  Y. Yanagawa,et al.  Lhx6 Activity Is Required for the Normal Migration and Specification of Cortical Interneuron Subtypes , 2007, The Journal of Neuroscience.

[40]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[41]  J. Whitsett,et al.  Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner , 2007, Development.

[42]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[43]  J. Clark,et al.  SYNAPTIC AND NON‐SYNAPTIC MITOCHONDRIA FROM RAT BRAIN: ISOLATION AND CHARACTERIZATION , 1977, Journal of neurochemistry.

[44]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[45]  J. Hardy,et al.  A rapid method for preparing synaptosomes: Comparison, with alternative procedures , 1981, Brain Research.

[46]  J. Parnavelas,et al.  Lhx6 Regulates the Migration of Cortical Interneurons from the Ventral Telencephalon But Does Not Specify their GABA Phenotype , 2004, The Journal of Neuroscience.

[47]  B. Devlin,et al.  Association and linkage analyses of RGS4 polymorphisms in schizophrenia. , 2002, Human molecular genetics.

[48]  S. Nelson,et al.  Celsius: a community resource for Affymetrix microarray data , 2007, Genome Biology.

[49]  Paul Brazzell,et al.  Conflict of interest. , 2002, The Canadian veterinary journal = La revue veterinaire canadienne.

[50]  W. Webb,et al.  Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic Glycolysis , 2004, Science.

[51]  I. Cobos,et al.  Cellular patterns of transcription factor expression in developing cortical interneurons. , 2006, Cerebral cortex.

[52]  S. Hockfield,et al.  Monoclonal antibodies distinguish antigenically discrete neuronal types in the vertebrate central nervous system. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Gilman,et al.  RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Lewis,et al.  Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia , 2001, Molecular Psychiatry.

[55]  S. Horvath,et al.  Weighted gene coexpression network analysis strategies applied to mouse weight , 2007, Mammalian Genome.

[56]  S. Grant,et al.  Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome , 2006, Journal of neurochemistry.

[57]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[58]  S. Horvath,et al.  Conservation and evolution of gene coexpression networks in human and chimpanzee brains , 2006, Proceedings of the National Academy of Sciences.

[59]  J. Rubenstein,et al.  Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. , 1997, Developmental biology.

[60]  M. Ekker,et al.  A Highly Conserved Enhancer in the Dlx5/Dlx6Intergenic Region is the Site of Cross-Regulatory Interactions betweenDlx Genes in the Embryonic Forebrain , 2000, The Journal of Neuroscience.

[61]  S. Anderson,et al.  Mutations of the Homeobox Genes Dlx-1 and Dlx-2 Disrupt the Striatal Subventricular Zone and Differentiation of Late Born Striatal Neurons , 1997, Neuron.

[62]  Homin K. Lee,et al.  Coexpression analysis of human genes across many microarray data sets. , 2004, Genome research.

[63]  Jun Dong,et al.  Understanding network concepts in modules , 2007, BMC Systems Biology.

[64]  S. Mcconnell,et al.  The generation of neuronal diversity in the central nervous system. , 1991, Annual review of neuroscience.

[65]  S. Mcconnell,et al.  Strategies for the generation of neuronal diversity in the developing central nervous system , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Douglas A. Hosack,et al.  Identifying biological themes within lists of genes with EASE , 2003, Genome Biology.

[67]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[68]  M. Karas,et al.  Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis , 2005, Journal of neurochemistry.

[69]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[70]  Charles J. Wilson,et al.  RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion , 2006, Nature Neuroscience.

[71]  J. Geddes,et al.  High Cyclophilin D Content of Synaptic Mitochondria Results in Increased Vulnerability to Permeability Transition , 2007, The Journal of Neuroscience.

[72]  M. Crompton,et al.  Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. , 1998, European journal of biochemistry.

[73]  I. Cobos,et al.  The vertebrate ortholog of Aristaless is regulated by Dlx genes in the developing forebrain , 2005, The Journal of comparative neurology.

[74]  M. Symons,et al.  Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis , 2000, Current Biology.

[75]  Bin Zhang,et al.  Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R , 2008, Bioinform..

[76]  F. Polleux Genetic Mechanisms Specifying Cortical Connectivity Let’s MakeSome Projections Together , 2005, Neuron.

[77]  Y. Leea,et al.  Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target , 2006 .

[78]  Zin Z. Khaing,et al.  Proteomic comparison of two fractions derived from the transsynaptic scaffold , 2005, Journal of neuroscience research.

[79]  Mary Kay Lobo,et al.  FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains , 2006, Nature Neuroscience.

[80]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[81]  G. Ladds,et al.  Differential effects of RGS proteins on G alpha(q) and G alpha(11) activity. , 2007, Cellular signalling.

[82]  Hui Lu,et al.  Correlation between gene expression profiles and protein-protein interactions within and across genomes , 2005, Bioinform..

[83]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[84]  R. Behringer,et al.  Requirement for LIml in head-organizer function , 1995, Nature.

[85]  W. Craigen,et al.  Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death , 2007, Nature Cell Biology.

[86]  C. Stevens,et al.  Glutamate activates multiple single channel conductances in hippocampal neurons , 1987, Nature.

[87]  Matthew A. Zapala,et al.  Adult mouse brain gene expression patterns bear an embryologic imprint. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[89]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[90]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.