A novel organic chromophore for dye-sensitized nanostructured solar cells.

A novel and efficient polyene-diphenylaniline dye for dye-sensitized solar cells has been synthesized. The dye has a short synthesis route and is readily adsorbed on TiO2 under a variety of dye-bath conditions. The overall solar-to-energy conversion efficiency is over 5% in the preliminary tests, in comparison with the conventional N719 dye which gives 6% under the same conditions. The dye is designed for future use also in solid state devices, with triarylamine based hole conductors.

[1]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[2]  Hidetoshi Miura,et al.  Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells , 2005 .

[3]  Hironori Arakawa,et al.  Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells , 2003 .

[4]  M. Grätzel Corrigendum to “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” [J. Photochem. Photobiol. A: Chem. 164 (2004) 3–14] , 2004 .

[5]  Fuyou Li,et al.  Photoelectric Conversion Properties of Nanocrystalline TiO2 Electrodes Sensitized with Hemicyanine Derivatives , 2000 .

[6]  J. Moser Later rather than sooner , 2005, Nature materials.

[7]  Kuo-Chuan Ho,et al.  Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. , 2005, Organic letters.

[8]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[9]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[10]  A. Jen,et al.  Trends in Optical Nonlinearity and Thermal Stability in Electrooptic Chromophores Based upon the 3-(Dicyanomethylene)-2,3-dihydrobenzothiophene-1, 1-dioxide Acceptor , 2004 .

[11]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[12]  Neil A. Anderson,et al.  Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells , 2004 .

[13]  Emilio Palomares,et al.  Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. , 2005, Angewandte Chemie.