Around the Physical Church-Turing Thesis: Cellular Automata, Formal Languages, and the Principles of Quantum Theory

The physical Church-Turing thesis explains the Galileo thesis, but also suggests an evolution of the language used to describe nature. It can be proved from more basic principle of physics, but it also questions these principles, putting the emphasis on the principle of a bounded density of information. This principle itself questions our formulation of quantum theory, in particular the choice of a field for the scalars and the origin of the infinite dimension of the vector spaces used as state spaces.

[1]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[2]  Gilles Dowek,et al.  On the completeness of quantum computation models , 2010, CiE.

[3]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[4]  Martin Hofmann,et al.  Finite Dimensional Vector Spaces Are Complete for Traced Symmetric Monoidal Categories , 2008, Pillars of Computer Science.

[5]  Daniel S. Graça,et al.  Effective Computability of Solutions of Differential Inclusions The Ten Thousand Monkeys Approach , 2009, J. Univers. Comput. Sci..

[6]  Vincent Nesme,et al.  One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations , 2007, LATA.

[7]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[8]  A. Connes THE WITT CONSTRUCTION IN CHARACTERISTIC ONE AND QUANTIZATION , 2010, 1009.1769.

[9]  Paul Benioff,et al.  New Gauge Field from Extension of Space Time Parallel Transport of Vector Spaces to the Underlying Number Systems , 2010, 1008.3134.

[10]  Nachum Dershowitz,et al.  A Natural Axiomatization of Computability and Proof of Church's Thesis , 2008, Bulletin of Symbolic Logic.

[11]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Benjamin Schumacher,et al.  Locality and Information Transfer in Quantum Operations , 2005, Quantum Inf. Process..

[13]  R. Werner,et al.  Reversible quantum cellular automata , 2004, quant-ph/0405174.

[14]  Current Trends in Axiomatic Quantum Field Theory , 1998, hep-th/9811233.

[15]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[16]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[17]  Benedikt Löwe,et al.  New Computational Paradigms , 2005 .

[18]  Daniel S. Graça,et al.  Effective Computability of Solutions of Ordinary Differential Equations The Thousand Monkeys Approach , 2008, CCA.

[19]  P. Oscar Boykin,et al.  On universal and fault-tolerant quantum computing: a novel basis and a new constructive proof of universality for Shor's basis , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[20]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[21]  Gilles Dowek,et al.  Operational semantics for formal tensorial calculus , 2004 .

[22]  Gilles Dowek,et al.  The Physical Church-Turing Thesis and the Principles of Quantum Theory , 2011, Int. J. Found. Comput. Sci..

[23]  Gilles Dowek,et al.  The physical Church thesis as an explanation of the Galileo thesis , 2012, Natural Computing.

[24]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[25]  Vincent Nesme,et al.  Unitarity plus causality implies localizability , 2007, J. Comput. Syst. Sci..

[26]  Martin Ziegler,et al.  Physically-relativized Church-Turing Hypotheses: Physical foundations of computing and complexity theory of computational physics , 2008, Appl. Math. Comput..

[27]  Nachum Dershowitz,et al.  The Church-Turing Thesis over Arbitrary Domains , 2008, Pillars of Computer Science.

[28]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[29]  Fernando Ferreira,et al.  Programs, Proofs, Processes , 2012, Theory of Computing Systems.

[30]  Oron Shagrir,et al.  Physical Computation: How General are Gandy’s Principles for Mechanisms? , 2007, Minds and Machines.

[31]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[32]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[33]  Albert Einstein,et al.  Physics and reality , 1936 .

[34]  R. Werner,et al.  Semicausal operations are semilocalizable , 2001, quant-ph/0104027.

[35]  Richard Montague,et al.  Towards a general theory of computability , 1960, Synthese.

[36]  Olivier Bournez,et al.  A Survey on Continuous Time Computations , 2009, ArXiv.

[37]  E. Wigner The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .