Low-Rank Solvers for Fractional Differential Equations

Many problems in science and technology can be cast using differential equations with both fractional time and spatial derivatives. To accurately simulate natural phenomena using this technology fine spatial and temporal discretizations are required, leading to large-scale linear systems or matrix equations, especially whenever more than one space dimension is considered. The discretization of fractional differential equations typically involves dense matrices with a Toeplitz or in the variable coefficient case Toeplitz-like structure . We combine the fast evaluation of Toeplitz matrices and their circulant preconditioners with state-of-the-art linear matrix equation methods to efficiently solve these problems, both in terms of CPU time and memory requirements. Additionally, we illustrate how these techniqes can be adapted when variable coefficients are present. Numerical experiments on typical differential problems with fractional derivatives in both space and time showing the effectiveness of the approaches are reported.

[1]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[2]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[3]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[4]  Valeria Simoncini,et al.  Convergence analysis of the extended Krylov subspace method for the Lyapunov equation , 2011, Numerische Mathematik.

[5]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[6]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[7]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[8]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[9]  Valeria Simoncini,et al.  Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..

[10]  I. Podlubny Matrix Approach to Discrete Fractional Calculus , 2000 .

[11]  Christine Tobler,et al.  Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .

[12]  H Lippert,et al.  How preservation time changes the linear viscoelastic properties of porcine liver. , 2013, Biorheology.

[13]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[14]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[15]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[16]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[17]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[18]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[19]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[20]  James Durbin,et al.  The fitting of time series models , 1960 .

[21]  S. Dolgov Tensor product methods in numerical simulation of high-dimensional dynamical problems , 2014 .

[22]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[23]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[24]  Martin Stoll,et al.  A Low-Rank in Time Approach to PDE-Constrained Optimization , 2015, SIAM J. Sci. Comput..

[25]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[26]  Isabel S. Jesus,et al.  Fractional Electrical Impedances in Botanical Elements , 2008 .

[27]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[28]  Reinhold Schneider,et al.  Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..

[29]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[30]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[31]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[32]  N. Wiener The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .

[33]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[34]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[35]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[36]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[37]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[38]  Markus Weimar Breaking the curse of dimensionality , 2015 .

[39]  Hong Wang,et al.  Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..

[40]  M. Bezerra,et al.  Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology , 2009 .

[41]  Ivan V. Oseledets,et al.  DMRG Approach to Fast Linear Algebra in the TT-Format , 2011, Comput. Methods Appl. Math..

[42]  Pu Yi-fei Application of Fractional Differential Approach to Digital Image Processing , 2007 .

[43]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[44]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[45]  Martin Stoll,et al.  Fast tensor product solvers for optimization problems with fractional differential equations as constraints , 2016, Appl. Math. Comput..

[46]  Bernhard Beckermann,et al.  An Error Analysis for Rational Galerkin Projection Applied to the Sylvester Equation , 2011, SIAM J. Numer. Anal..

[47]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[48]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[49]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[50]  Mingkui Chen On the solution of circulant linear systems , 1987 .

[51]  Yinchu Zhu,et al.  Breaking the curse of dimensionality in regression , 2017, ArXiv.

[52]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[53]  I. Podlubny Fractional differential equations , 1998 .

[54]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[55]  Qianqian Yang,et al.  A banded preconditioner for the two-sided, nonlinear space-fractional diffusion equation , 2013, Comput. Math. Appl..

[56]  Stefano Serra Capizzano,et al.  Spectral analysis and structure preserving preconditioners for fractional diffusion equations , 2016, J. Comput. Phys..

[57]  S. Dolgov TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.

[58]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[59]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[60]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[61]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[62]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[63]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[64]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[65]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[66]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[67]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .