Thermodynamic constraints on seismic inversions

SUMMARY We discuss two types of physical constraints derived from thermodynamics that can be applied during seismic inversions. The first constraint involves assimilating heat-flow measurements in seismic inversions. This can improve seismic models beneath continents, particularly beneath cratons and continental platforms where uncertainties in crustal radioactive heat production and the anelastic correction are smallest. The second thermodynamic constraint involves replacing ad-hoc seismic parametrizations with physical parameters that describe the thermal state and evolution of the oceanic upper mantle. The inverse problem is, therefore, recast as a hypothesis test to determine if the data are consistent with the thermodynamic model, which here consists of a shallow conductive layer underlain by a convective mantle. We argue that this constraint produces more plausible models of the oceanic lithosphere and asthenosphere and reduces the uncertainty of the seismic model while negligibly degrading the fit to the seismic data in most places.

[1]  Anatoli L. Levshin,et al.  Global surface wave diffraction tomography , 2002 .

[2]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[3]  Jeannot Trampert,et al.  Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle , 2001 .

[4]  R. Dietmar Müller,et al.  Digital isochrons of the world's ocean floor , 1997 .

[5]  J. Canas,et al.  Rayleigh wave attenuation and its variation across the Atlantic Ocean , 1981 .

[6]  Göran Ekström,et al.  The unique anisotropy of the Pacific upper mantle , 1998, Nature.

[7]  Anatoli L. Levshin,et al.  A Fast and Reliable Method for Surface Wave Tomography , 2001 .

[8]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[9]  C. Jaupart,et al.  The thermal structure and thickness of continental roots , 1999 .

[10]  M. Ritzwoller,et al.  A resolved mantle anomaly as the cause of the Australian‐Antarctic Discordance , 2003 .

[11]  W. McDonough,et al.  Mineralogy and composition of the upper mantle , 1998 .

[12]  M. Ritzwoller,et al.  Lithospheric structure of the Canadian Shield inferred from inversion of surface-wave dispersion with thermodynamic a priori constraints , 2004, Geological Society, London, Special Publications.

[13]  R. Snieder,et al.  Thermal structure of continental upper mantle inferred from S-wave velocity and surface heat flow , 2000 .

[14]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[15]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[16]  G. Nolet,et al.  Slab temperature and thickness from seismic tomography: 2. Izu‐Bonin, Japan, and Kuril subduction zones , 1999 .

[17]  D. Anderson,et al.  A model of dislocation-controlled rheology for the mantle , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  Guust Nolet,et al.  Slab temperature and thickness from seismic tomography: 1. Method and application to Tonga , 1999 .

[19]  S. Karato,et al.  Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle , 1998 .

[20]  M. Ritzwoller,et al.  Crustal and upper mantle structure beneath Antarctica and surrounding oceans , 2001 .

[21]  B. Parsons,et al.  An analysis of the variation of ocean floor bathymetry and heat flow with age , 1977 .

[22]  K. Furlong,et al.  Lateral variations in upper mantle thermal structure inferred from three‐dimensional seismic inversion models , 1989 .

[23]  K. Furlong,et al.  Thermal structure of the continental lithosphere: constraints from seismic tomography , 1995 .

[24]  Jeannot Trampert,et al.  Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds , 1995 .

[25]  Louis Moresi,et al.  A new class of equilibrium geotherms in the deep thermal lithosphere of continents , 2000 .

[26]  Guust Nolet,et al.  Slab temperature and thickness from seismic tomography , 1999 .

[27]  W. McDonough,et al.  Chapter 4. MINERALOGY AND COMPOSITION OF THE UPPER MANTLE , 1998 .

[28]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[29]  Pierre Vacher,et al.  Shallow mantle temperatures under Europe from P and S wave tomography , 2000 .

[30]  R. Morrow,et al.  Anelasticity of the Iceland Plateau from surface wave analysis , 1989 .

[31]  S. Zhong,et al.  Cooling history of the Pacific lithosphere , 2003 .

[32]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[33]  Donald L. Turcotte,et al.  Geodynamics : applications of continuum physics to geological problems , 1982 .

[34]  Don L. Anderson,et al.  Mineralogy and composition of the upper mantle , 1984 .

[35]  K. Fuchs,et al.  Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt , 1996 .

[36]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[37]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[38]  W. McDonough,et al.  Thermal structure, thickness and composition of continental lithosphere , 1998 .

[39]  K. Furlong,et al.  Three-dimensional thermal modeling of the California upper mantle: a slab window vs. stalled slab , 2001 .

[40]  H. Dick,et al.  Mineralogic variability of the uppermost mantle along mid-ocean ridges , 1984 .

[41]  L. Guillou-Frottier,et al.  Heat flow and thickness of the lithosphere in the Canadian Shield , 1998 .

[42]  David Gubbins,et al.  Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media , 1980 .

[43]  H. Pollack,et al.  A global analysis of heat flow from Precambrian terrains: Implications for the thermal structure of Archean and Proterozoic lithosphere , 1993 .

[44]  Anatoli L. Levshin,et al.  Eurasian surface wave tomography: Group velocities , 1998 .

[45]  Ș.,et al.  Seismic Velocities in Mantle Minerals and the Mineralogy of the Upper Mantle , 2022 .

[46]  Walter D. Mooney,et al.  Thermal thickness and evolution of Precambrian lithosphere: A global study , 2001 .

[47]  M. Ritzwoller,et al.  Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .

[48]  Jeroen Tromp,et al.  Measurements and global models of surface wave propagation , 1997 .