Agaricus bisporus browning: a review

Agaricus bisporus browning is a common and economically detrimental phenomenon, in which melanogenic phenols are enzymically processed into quinones, which evolve eventually to melanins. This review deals with the two fundamental sides of this process, enzyme(s) and phenolic substrates. Mushroom tyrosinase, the main polyphenol oxidase encountered in the A. bisporus sporophore, is treated in the first part. Its overall molecular architecture, isoforms, primary sequence and genetic background are considered. The presentation of tyrosinase catalytic features, including enzyme assays, kinetic properties, substrates and inhibitors, is followed by a comprehensive description of the active site and reaction mechanisms. Because of their relevance for studies of mushroom browning during development and post-harvest storage, the occurrence and properties of latent enzyme forms, as well as the location of tyrosinase and variations of its activity during the A. bisporus life cycle, are also reviewed. The second part deals with the substrates, particularly γ-L-glutaminyl-4-hydroxybenzene (GHB) and its derivatives. Main data concerning the nature, obtention (by extraction or synthesis), spectrometric and chromatographic characteristics, chemical stabilities and biological properties of these typical Agaricaceae compounds are presented. Their distribution and levels according to the strains and flushes are described, as well as their variations during storage. Thirdly, the relationship between browning and the natural or pathogenic discolouration intensity is developed.

[1]  W. Flurkey,et al.  Activity, isoenzymes and purity of mushroom tyrosinase in commercial preparations , 1991 .

[2]  L. Vámos-Vigyázó,et al.  Polyphenol oxidases and peroxidases in fruits and vegetables , 1981 .

[3]  Y. E. Rhodes,et al.  Changes in the amino-acid composition of Agaricus campestris with respect to successive crops. , 1960 .

[4]  A. Szent-Gyorgyi,et al.  Agaridoxin, a mushroom metabolite. Isolation, structure, and synthesis. , 1976, The Journal of organic chemistry.

[5]  E. Harel,et al.  Assay of catechol oxidase—a critical comparison of methods , 1966 .

[6]  B. Kalyanaraman,et al.  PHOTOIONIZATION OF MELANIN PRECURSORS: AN ELECTRON SPIN RESONANCE INVESTIGATION USING THE SPIN TRAP 5,5‐DIMETHYL‐1‐PYRROLINE‐1‐OXIDE (DMPO) , 1982 .

[7]  H. Dobbie,et al.  Complex-formation between polypeptides and metals. 2. The reaction between cupric ions and some dipeptides. , 1955, The Biochemical journal.

[8]  D. Wong Food Enzymes: Structure and Mechanism , 1995 .

[9]  D. Robb Subunit differences among the multiple forms of mushroom tyrosinase [proceedings]. , 1979, Biochemical Society transactions.

[10]  E. Harel,et al.  Evidence for conformational changes in grape catechol oxidase , 1972 .

[11]  D. Keilin,et al.  Polyphenol Oxidase. Purification, Nature and Properties , 1938 .

[12]  N. Horowitz,et al.  The isolation and properties of crystalline tyrosinase from Neurospora. , 1963, The Journal of biological chemistry.

[13]  H. Tsuji,et al.  Quantitative determination of the free amino acids and their derivatives in the common edible mushroom, Agaricus bisporus. , 1981, Journal of nutritional science and vitaminology.

[14]  F. Moquet,et al.  Pseudomonas tolaasii and tolaasin: comparison of symptom induction on a wide range of Agaricus bisporus strains , 1996 .

[15]  H. S. Mason Comparative biochemistry of the phenolase complex. , 1955, Advances in enzymology and related subjects of biochemistry.

[16]  H. S. Mason,et al.  OXYGEN TRANSFER AND ELECTRON TRANSPORT BY THE PHENOLASE COMPLEX1 , 1955 .

[17]  J. Casimir,et al.  Séparation et caractérisation du l(+)-γ-(p-hydroxy) anilide de l'acide glutamique à partir de Agaricus hortensis , 1960 .

[18]  D. Malamud,et al.  Protein transfer from isoelectric focusing Gels: the native blot. , 1982, Analytical biochemistry.

[19]  G. M. Sapers,et al.  Effects of washing on polyphenols and polyphenol oxidase in commercial mushrooms (Agaricus bisporus) , 1994 .

[20]  E. Solomon,et al.  Ultraviolet resonance Raman study of oxytyrosinase. Comparison with oxyhemocyanins , 1978 .

[21]  H. Wichers,et al.  Sequence and structural features of plant and fungal tyrosinases. , 1997, Phytochemistry.

[22]  R. Dawley,et al.  Differentiation of tyrosinase and laccase using 4-hexyl-resorcinol, a tyrosinase inhibitor , 1993 .

[23]  G. Travaglini,et al.  Isolation and characterization of the tyrosinase gene from Neurospora crassa. , 1989, The Journal of biological chemistry.

[24]  W. Flurkey,et al.  Active, inactive and in vitro synthesized forms of polyphenoloxidase during leaf development , 1987 .

[25]  R. F. Weaver,et al.  Mechanism of action of a respiratory inhibitor from the gill tissue of the sporulating common mushroom, Agaricus bisporus. , 1972, Archives of biochemistry and biophysics.

[26]  E. Solomon,et al.  Substrate analogue binding to the coupled binuclear copper active site in tyrosinase , 1985 .

[27]  B. Malmström,et al.  An Electron Spin Resonance Study of the State of Copper in Fungal Laccase , 1959, Nature.

[28]  H. S. Mason,et al.  Magnetic dipole-dipole coupled Cu(II) pairs in nitric oxide-treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemocyanin. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[30]  N. Arpin,et al.  Occurrence of agaritine and γ-glutaminyl-4-hydroxybenzene (GHB) in the fructifying mycelium of Agaricus bisporus , 1993 .

[31]  J. Jen Quality factors of fruits and vegetables. Chemistry and technology. , 1989 .

[32]  D. Rast,et al.  A comparison of native and synthetic mushroom melanins by Fourier-transform infrared spectroscopy , 1995 .

[33]  I. C. O. B. Nomenclature [Nomenclature of multiple forms of enzymes. Recommendations (1971)]. , 1971, Biochimie.

[34]  W. Flurkey,et al.  Tyrosinase Activity and Isoenzymes in Developing Mushrooms , 1989 .

[35]  H. S. Mason Mechanisms of oxygen metabolism. , 2006, Science.

[36]  H. S. Mason,et al.  The multiple forms of mushroom tyrosinase. Association-dissociation phenomena. , 1969, The Journal of biological chemistry.

[37]  K. Johnstone,et al.  Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus , 1993 .

[38]  Mitsuhiko Satô,et al.  The latency of spinach chloroplast phenolase , 1976 .

[39]  H. Tsuji,et al.  Studies on the biosynthesis of N-(γ-L-glutamyl)-4-hydroxyaniline] in Agaricus bisporus: Identification of the position in shikimic acid at which the amination occurs , 1981 .

[40]  K. Lerch,et al.  Primary structure of tyrosinase from Neurospora crassa. I. Purification and amino acid sequence of the cyanogen bromide fragments. , 1982, The Journal of biological chemistry.

[41]  The tomato 66.3-kD polyphenoloxidase gene: molecular identification and developmental expression. , 1992, The Plant cell.

[42]  I. Whimster Pigment-Cell Biology , 1968, Nature.

[43]  H. S. Mason,et al.  The multiple forms of mushroom tyrosinase. Purification and molecular properties of the enzymes. , 1969, The Journal of biological chemistry.

[44]  A. Mayer,et al.  A simple histochemical method for locating enzymes in plant tissue using nitrocellulose blotting. , 1987 .

[45]  R. F. Weaver,et al.  Gamma-L-glutaminyl-3,4-benzoquinone. Structural studies and enzymatic synthesis. , 1971, The Journal of biological chemistry.

[46]  W. Flurkey Identification of Tyrosinase in Mushrooms by Isoelectric Focusing , 1991 .

[47]  G. Felsenfeld The binding of copper by hemocyanin. , 1954, Journal of cellular and comparative physiology.

[48]  J. Labarère,et al.  Isozyme characterization of dikaryotic strains of the edible basidiomyceteAgaricus bitorquis (Quel.) Sacc. (syn.Agaricus edulis) , 1990 .

[49]  H. Hirsch Environmental Factors Influencing the Differentiation of Protoperithecia and their Relation to Tyrosinase and Melanin Formation in Neurospora crassa , 1954 .

[50]  I. M. Klotz,et al.  Oxygen-carrying proteins: a comparison of the oxygenation reaction in hemocyanin and hemerythrin with that in hemoglobin. , 1955, Science.

[51]  S. Duke,et al.  Polyphenol oxidase: The chloroplast oxidase with no established function , 1988 .

[52]  M. Brunori,et al.  Kinetics of reconstitutioin of polyphenoloxidase from apoenzyme and copper. , 1972, Biochemical and biophysical research communications.

[53]  S. Pomerantz,et al.  Tyrosine hydroxylation catalyzed by mammalian tyrosinase: an improved method of assay. , 1964, Biochemical and biophysical research communications.

[54]  H. S. Mason,et al.  Oxidases and Related Redox Systems , 1982 .

[55]  H. Wichers,et al.  The low-isoelectric point tyrosinase of Agaricus bisporus may be a glycoprotein , 1994 .

[56]  K. Burton,et al.  Biochemical changes associated with mushroom quality in Agaricus spp. , 1993 .

[57]  P. Rainey,et al.  Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii☆ , 1991 .

[58]  D. Rast,et al.  The biosynthesis and possible function of γ-glutaminyl-4-hydroxybenzene in Agaricus bisporus , 1981 .

[59]  F. M. Robbins,et al.  Mushroom ninhydrin-positive compounds. Amino acids, related compounds, and other nitrogenous substances found in cultivated mushroom, Agaricus campestris. , 1967 .

[60]  K. Lerch,et al.  Comparison of amino acid sequence and thermostability of tyrosinase from three wild type strains of Neurospora crassa. , 1982, The Journal of biological chemistry.

[61]  F. García-Carmona,et al.  Hysteresis of mushroom tyrosinase: Lag period of cresolase activity , 1981 .

[62]  N. Horowitz,et al.  Structural and regulative genes controlling tyrosinase synthesis in Neurospora. , 1961, Cold Spring Harbor symposia on quantitative biology.

[63]  F. Solano,et al.  Half-lives of tyrosinase isozymes from Harding-Passey mouse melanoma. , 1988, Cancer letters.

[64]  N. G. Nair,et al.  Mushroom blotch bacterium during cultivation. , 1980 .

[65]  M. Huber,et al.  Primary structure of tyrosinase from Streptomyces glaucescens. , 1985, Biochemistry.

[66]  R. F. Weaver,et al.  Isolation from the mushroom Agaricus bisporus and chemical synthesis of gamma-L-glutaminyl-4-hydroxybenzene. , 1971, The Journal of biological chemistry.

[67]  S. Duke,et al.  A LIMITED SURVEY OF THE PHYLOGENETIC DISTRIBUTION OF POLYPHENOL OXIDASE , 1991 .

[68]  Alfred M. Mayer,et al.  Polyphenol oxidases in plants , 1979 .

[69]  M. Amiot,et al.  Enzymatic browning reactions in apple and apple products. , 1994, Critical reviews in food science and nutrition.

[70]  W. Flurkey,et al.  Histochemical and immunochemical localization of tyrosinase in whole tissue sections of mushrooms , 1988 .

[71]  Y. Moro-oka,et al.  Copper-Dioxygen Complexes. Inorganic and Bioinorganic Perspectives , 1994 .

[72]  E. Harel,et al.  Phenylhydrazine, a specific irreversible inhibitor of catechol oxidase , 1971 .

[73]  D. Graham,et al.  Cytostatic, cytocidal and potential antitumor properties of a class of quinoid compounds, initiators of the dormant state in the spores of Agaricus bisporus. , 1975, The American journal of pathology.

[74]  H. Duckworth,et al.  Physicochemical and kinetic properties of mushroom tyrosinase. , 1970, The Journal of biological chemistry.

[75]  T. Swain,et al.  Activation of the Latent Tyrosinase of Broad Bean , 1964, Nature.

[76]  E. Solomon,et al.  Preparation and characterization of met apo hemocyanin: a single copper (II) active site. , 1978, Biochemical and biophysical research communications.

[77]  D. Rast,et al.  Self inhibition of the Agaricus bisporus Spore by CO2 and/or γ‐Glulaminyl‐4‐hydroxybenzene and γ‐Gtutaminyl‐3,4‐benzoquinone: A Biochemical Analysis , 1979 .

[78]  Alfred M. Mayer,et al.  Polyphenol oxidases in plants. Recent progress , 1986 .

[79]  D. Robb,et al.  The multiple forms of mushroom tyrosinase. Structural studies on the isozymes. , 1969, The Journal of biological chemistry.

[80]  Dawson Cr,et al.  On the nature of highly purified mushroom tyrosinase preparations. , 1949 .

[81]  N. Sueoka,et al.  Genetic determination and enzymatic induction of tyrosinase in Neurospora , 1960 .

[82]  J. Hammond,et al.  Carbohydrate metabolism in Agaricus bisporus (Lange) Sing: changes in soluble carbohydrates during growth of mycelium and sporophore. , 1976, Journal of general microbiology.

[83]  M. Bibb,et al.  The nucleotide sequence of the tyrosinase gene from Streptomyces antibioticus and characterization of the gene product. , 1985, Gene.

[84]  Laure Soulier Contribution à l'étude du brunissement d'Agaricus bisporus (Lange) Imbach , 1994 .

[85]  J. Golbeck,et al.  Spinach Thylakoid Polyphenol Oxidase : ISOLATION, ACTIVATION, AND PROPERTIES OF THE NATIVE CHLOROPLAST ENZYME. , 1981, Plant physiology.

[86]  S. Menon,et al.  Benzoic acid inhibition of the α, β, and γ isozymes of Agaricus bisporus tyrosinase , 1990 .

[87]  W. Loomis Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. , 1974, Methods in enzymology.

[88]  B. Barisas,et al.  A proteolytically activated tyrosinase from frog epidermis. , 1974, The Journal of biological chemistry.

[89]  M. Yonekura,et al.  Subunit Structure of Phenoloxidase Purified from the Larvae of Housefly , 1980 .

[90]  W. Flurkey,et al.  Detection of polyphenoloxidase isoenzymes by electroblotting and photography , 1986 .

[91]  W. Flurkey,et al.  Activation and alteration of plant and fungal polyphenoloxidase isoenzymes in sodium dodecylsulfate electrophoresis , 1984 .

[92]  J. L. Smith,et al.  Separation and purification of the phenolases of the common mushroom. , 1962, The Journal of biological chemistry.

[93]  H. S. Mason The chemistry of melanin; mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase. , 1948, The Journal of biological chemistry.

[94]  H. S. Mason,et al.  Quaternary structure of mushroom tyrosinase. , 1976, Biochemical and biophysical research communications.

[95]  V. Hearing,et al.  Mammalian tyrosinase--the critical regulatory control point in melanocyte pigmentation. , 1987, The International journal of biochemistry.

[96]  M. Tester,et al.  Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin , 1991 .

[97]  K. Lerch Primary structure of tyrosinase from Neurospora crassa. II. Complete amino acid sequence and chemical structure of a tripeptide containing an unusual thioether. , 1982, The Journal of biological chemistry.

[98]  S. Gutteridge,et al.  Photochemical oxidation of tyrosinase , 1977 .

[99]  P. Jeffs,et al.  Investigation of structure-function relationships of cytotoxic quinones of natural and synthetic origin. , 1978, Cancer research.

[100]  M. Lacroix,et al.  Dose rate effect of gamma irradiation on phenolic compounds, polyphenol oxidase, and browning of mushrooms (Agaricus bisporus). , 1999, Journal of agricultural and food chemistry.

[101]  F. Gurd,et al.  Complex formation between metallic cations and proteins, peptides and amino acids. , 1956, Advances in protein chemistry.

[102]  F. C. Miller,et al.  Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. 'reactans', and 'gingeri' , 1996 .

[103]  A. Zuberbühler,et al.  9 – COPPER-CONTAINING OXYGENASES , 1974 .

[104]  R. F. Weaver,et al.  Isolation of -L-glutaminyl 4-hydroxybenzene and -L-glutaminyl 3,4-benzoquinone: a natural sulfhydryl reagent, from sporulating gill tissue of the mushroom Agaricus bisporus. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[105]  R. H. Kenten Latent phenolase in extracts of broad-bean (Vicia fabaL.) leaves. 2. Activation by anionic wetting agents. , 1958, The Biochemical journal.

[106]  E. Solomon,et al.  Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins , 1980 .

[107]  F. Gurd,et al.  The Association of Imidazole with the Ions of Zinc and Cupric Copper1a,b,c , 1954 .

[108]  R. Spritz,et al.  Mutational mapping of the catalytic activities of human tyrosinase. , 1992, The Journal of biological chemistry.

[109]  K. Boekelheide,et al.  Synthesis of gamma-L-glutaminyl-[3,5-3H]4-hydroxybenzene and the study of reactions catalyzed by the tyrosinase of Agaricus bisporus. , 1979, The Journal of biological chemistry.

[110]  G. Turian,et al.  The Fungal Spore: Morphogenetic Controls , 1982 .

[111]  R. D. King,et al.  Inhibition of the catecholase activity of mushroom tyrosinase by carbon monoxide , 1989 .

[112]  J. Lozano,et al.  The process for the activation of frog epidermis pro-tyrosinase. , 1982, The Biochemical journal.

[113]  I. M. Klotz,et al.  Interactions of Metal Ions with the Sulfhydryl Group of Serum Albumin , 1952 .

[114]  K. Yasunobu Mode of Action of Tyrosinase , 1959 .

[115]  H. Tsuji,et al.  Incorporation of radioactive shikimic acid into N-(γ-Lglutamyl)-4-hydroxyaniline in Agaricus bisporus , 1980 .

[116]  S. Gutteridge,et al.  Polypeptide composition of two fungal tyrosinases , 1981 .

[117]  Y. Fujita,et al.  Molecular cloning and nucleotide sequence of the protyrosinase gene, melO, from Aspergillus oryzae and expression of the gene in yeast cells. , 1995, Biochimica et biophysica acta.

[118]  K. Lerch,et al.  Reaction Inactivation of Tyrosinase , 1982 .

[119]  E. Triplett,et al.  A detergent-activated tyrosinase from Xenopus laevis. I. Purification and partial characterization. , 1985, The Journal of biological chemistry.

[120]  E. Harel,et al.  Multiple forms of Vitis vinifera catechol oxidase , 1973 .

[121]  R. Sharma,et al.  Hydrodynamic properties of mushroom tyrosinase , 1981 .

[122]  V. Kahn Tropolone—a compound that can aid in differentiating between tyrosinase and peroxidase , 1985 .

[123]  C. Soler-Rivas,et al.  Activation of tyrosinase in Agaricus bisporus strains following infection by Pseudomonas tolaasii or treatment with a tolaasin-containing preparation , 1997 .

[124]  Edward I. Solomon,et al.  ELECTRONIC STRUCTURES OF ACTIVE SITES IN COPPER PROTEINS : CONTRIBUTIONS TO REACTIVITY , 1992 .

[125]  G. Schütz,et al.  Functional analysis of alternatively spliced tyrosinase gene transcripts. , 1988, The EMBO journal.

[126]  K. Lerch Amino acid sequence of tyrosinase from Neurospora crassa. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[127]  H. S. Mason,et al.  The oxidation state of copper in resting tyrosinase. , 1974, The Journal of biological chemistry.

[128]  D. Rast,et al.  Ultrastructure of native and synthetic Agaricus bisporus melanins—Implications as to the compartmentation of melanogenesis in fungi , 1985 .

[129]  E. Zebrowski,et al.  A high resolution PAS stain for polyacrylamide gel electrophoresis. , 1973, Analytical biochemistry.

[130]  K. Karlin,et al.  Bioinorganic Chemistry of Copper , 1993, Springer Netherlands.

[131]  W. Flurkey,et al.  Tyrosinase Activities and Isoenzymes in Three Strains of Mushrooms , 1989 .

[132]  O. Hayaishi Molecular mechanisms of oxygen activation , 1974 .

[133]  B. Levenberg,et al.  STUDIES ON THE GAMMA-GLUTAMYLTRANSFERASE OF AGARICUS BISPORUS. , 1964, The Journal of biological chemistry.

[134]  G. Lindeberg Phenol Oxidases of the Cultivated Mushroom Psalliota bispora f. albida , 1950, Nature.

[135]  K. Boekelheide,et al.  Melanocytotoxicity and the Mechanism of Activation of γ-L-Glutaminyl-4-hydroxybenzene , 1980 .

[136]  K. Burton The effects of pre- and post-harvest development on mushroom tyrosinase , 1988 .

[137]  K. Lerch,et al.  Histidine at the active site of Neurospora tyrosinase. , 1981, Biochemistry.

[138]  E. Harel,et al.  Catechol oxidase from green olives: Properties and partial purification , 1977 .

[139]  W. Flurkey,et al.  PEROXIDASE AND POLYPHENOL OXIDASE ACTIVITIES IN DEVELOPING PEACHES , 1978 .

[140]  Dudley H. Williams,et al.  Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen, Pseudomonas tolaasii Paine , 1991 .

[141]  V. Hearing,et al.  Specific identification of an authentic clone for mammalian tyrosinase. , 1989, The Journal of biological chemistry.

[142]  G. Felsenfeld,et al.  The determination of cuprous ion in copper proteins. , 1960, Archives of biochemistry and biophysics.

[143]  A. Mayer,et al.  Stokes' radius changes of solubilized grape catechol oxidase , 1975 .

[144]  F. Renosto,et al.  Composition of cultivated mushrooms (Agaricus bisporus) during the growing cycle as affected by the nitrogen source introduced in composting , 1968 .

[145]  John R. L. Walker,et al.  The selective inhibition of ortho- and para-diphenol oxidases , 1980 .

[146]  N. Tolbert Activation of polyphenol oxidase of chloroplasts. , 1973, Plant physiology.

[147]  Denise M Smith,et al.  Improved methods for the extraction of polyphenol oxidase from d'anjou pears , 1985 .

[148]  E. M. Turner Phenoloxidase activity in relation to substrate and development stage in the mushroom, Agaricus bisporus , 1974 .

[149]  P. Goodenough The O-diphenol-oxygen-oxidoreductase of Agaricus bisporus: Activity and multiple forms during ageing , 1978 .

[150]  S. B. Brown Biochemical and clinical aspects of oxygen: Edited by Winslow S Caughey. pp 866. Academic Press, New York. 1979. $45 ISBN 0-121-64380-8 , 1981 .

[151]  H. Dobbie,et al.  Complex-formation between polypeptides and metals. I. Application of various experimental methods to the glycine-copper system. , 1955, The Biochemical journal.

[152]  W. Hol,et al.  3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin , 1984, Nature.

[153]  R. F. Weaver,et al.  Concerning the induction of dormancy in spores of Agaricus bisporus. , 1972, Experimental cell research.

[154]  B. Kwon,et al.  Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[155]  M. Wheeler,et al.  Biosynthesis and Functions of Fungal Melanins , 1986 .

[156]  J. Carpenter,et al.  Three-Dimensional Structure of the Oxygenated Form of the Hemocyanin Subunit II of Limulus Polyphemus at Atomic Resolution , 1993 .

[157]  A. Lerner On the metabolism of phenylalanine and tyrosine. , 1949, The Journal of biological chemistry.

[158]  B. Vallee,et al.  Zinc and metalloenzymes. , 1955, Advances in protein chemistry.

[159]  H. Tsuji,et al.  Purification and properties of 4-aminobenzoate hydroxylase, a new monooxygenase from Agaricus bisporus. , 1986, The Journal of biological chemistry.

[160]  N. Arpin,et al.  In vitro formation of a dimer in the 4-aminophenol-melanin pathway , 1994 .

[161]  R. Kerrigan,et al.  Enzymology and molecular biology of Agaricus bisporus tyrosinase , 1995 .

[162]  G. K. Podila,et al.  In vitro translation of mushroom tyrosinase. , 1986, Biochemical and biophysical research communications.

[163]  J. Bonaventura,et al.  Crystal structure of deoxygenated limulus polyphemus subunit II hemocyanin at 2.18 Å resolution: Clues for a mechanism for allosteric regulation , 1993, Protein science : a publication of the Protein Society.

[164]  M. Yamaguchi,et al.  Latent o-diphenol oxidase in mushrooms (Agaricus bisporus). , 1970, Canadian journal of biochemistry.

[165]  S. Gutteridge,et al.  The catecholase activity of Neurospora tyrosinase. , 1975, European journal of biochemistry.

[166]  C. Leone,et al.  Agaricus bisporus metapotyrosinase: preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site. , 1990, Biochemistry.

[167]  D. Root,et al.  Electronic Structures of Active Sites in Copper Proteins: Coupled Binuclear and Trinuclear Cluster Sites , 1993 .

[168]  H. Dobbie,et al.  Complex-formation between polypeptides and metals. 3. The reaction between cupric ions and diglycylglycine. , 1955, The Biochemical journal.

[169]  R. Tripathi,et al.  pH-dependent interconvertible forms of mushroom tyrosinase with different kinetic properties. , 1989, Pigment cell research.

[170]  T. Swain,et al.  Activation of vicia faba (L.) tyrosinase as effected by denaturing agents , 1966 .

[171]  J. Greenstein,et al.  Chemistry of the Amino Acids , 1961 .

[172]  S. Shibahara,et al.  Cloning and expression of cDNA encoding mouse tyrosinase. , 1986, Nucleic acids research.

[173]  D. Graham,et al.  Inhibition of DNA polymerase from L1210 murine leukemia by a sulfhydryl reagent from agaricus bisporus. , 1977, Cancer research.

[174]  W. C. Wong,et al.  Quantitative and scanning electron microscope observations on the attachment of Pseudomonas tolaasii and other bacteria to the surface of Agaricus bisporus , 1982 .

[175]  V. Kahn,et al.  Inhibition of mushroom tyrosinase by tropolone , 1985 .