Three-dimensional temperature profile in a dome-shaped habitat structure on the moon

[1]  R. Malla,et al.  Diurnal Temperature Variation on an Intact and Damaged Lunar Habitat Structure , 2023, Earth and Space 2022.

[2]  S. Linke,et al.  Thermal properties of lunar regolith simulant melting specimen , 2021 .

[3]  Y. Gourinat,et al.  Utilisation of Moon Regolith for Radiation Protection and Thermal Insulation in Permanent Lunar Habitats , 2021, Applied Sciences.

[4]  R. Malla,et al.  A Study of Layered Structural Configurations as Thermal and Impact Shielding of Lunar Habitats , 2021 .

[5]  J. Moreira,et al.  Numerical analysis of the thermal profile inside the wall of a rotary cement kiln , 2020 .

[6]  S. Barai,et al.  Thermal and mechanical properties of concrete and its constituents at elevated temperatures: A review , 2020 .

[7]  R. Lopez-Anido,et al.  Discrete-Event Simulation Thermal Model for Extrusion-Based Additive Manufacturing of PLA and ABS , 2020, Materials.

[8]  Kandyce Goodliff,et al.  The Artemis Program: An Overview of NASA's Activities to Return Humans to the Moon , 2020, 2020 IEEE Aerospace Conference.

[9]  M. Sperl,et al.  Thermal properties of processed lunar regolith simulant , 2019, International Journal of Applied Ceramic Technology.

[10]  D. Paige,et al.  A Model for the Thermophysical Properties of Lunar Regolith at Low Temperatures , 2019, Journal of Geophysical Research: Planets.

[11]  R. Rice,et al.  Finite element modelling of heat and moisture transfer through cross laminated timber panels , 2019, BioResources.

[12]  Xiongyao Li,et al.  Vacuum sintered lunar regolith simulant: Pore-forming and thermal conductivity , 2019, Ceramics International.

[13]  S. Kaierle,et al.  Selective Laser Melting for processing of regolith in support of a lunar base , 2018, Journal of Laser Applications.

[14]  Hsiao-Yun Chu The Evolution of the Fuller Geodesic Dome: From Black Mountain to Drop City , 2018 .

[15]  Riccardo Fazio,et al.  A Finite Difference Method on Quasi-uniform Mesh for Time-Fractional Advection-Diffusion Equations with Source Term. , 2018, 1801.07160.

[16]  Haym Benaroya,et al.  Lunar habitats: A brief overview of issues and concepts , 2017 .

[17]  S. Abid,et al.  Temperature Distributions and Variations in Concrete Box-Girder Bridges: Experimental and Finite Element Parametric Studies , 2015 .

[18]  Ramesh B. Malla,et al.  Determination of temperature variation on lunar surface and subsurface for habitat analysis and design , 2015 .

[19]  Manfred Curbach,et al.  Review of possible mineral materials and production techniques for a building material on the moon , 2014 .

[20]  R. Christie,et al.  Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage , 2013 .

[21]  S. K. Sundaram,et al.  Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry. , 2011, Review of Scientific Instruments.

[22]  Jen A Bright,et al.  The Response of Cranial Biomechanical Finite Element Models to Variations in Mesh Density , 2011, Anatomical record.

[23]  Juan José Benito,et al.  Application of the generalized finite difference method to solve the advection-diffusion equation , 2011, J. Comput. Appl. Math..

[24]  Robert J. Gustafson,et al.  Measurement of the Solar Absorptance and Thermal Emittance of Lunar Simulants , 2010 .

[25]  K. R. Sridhara Murthi,et al.  Strategic, technological and ethical aspects of establishing colonies on Moon and Mars , 2008 .

[26]  Nathan Mendes,et al.  New external convective heat transfer coefficient correlations for isolated low-rise buildings , 2007 .

[27]  W. Crawford,et al.  The 18.6‐year lunar nodal cycle and surface temperature variability in the northeast Pacific , 2007 .

[28]  H. Benaroya,et al.  Structural Design of a Lunar Habitat , 2006 .

[29]  H. Uysal,et al.  The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete , 2004 .

[30]  Isaac A. Meir,et al.  Thermal behavior of buildings with curved roofs as compared with flat roofs , 2003 .

[31]  Leonhard E. Bernold,et al.  Engineering, design and construction of lunar bases , 2002 .

[32]  Luis Gavete,et al.  Influence of several factors in the generalized finite difference method , 2001 .

[33]  A. Vasavada,et al.  Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits☆ , 1999 .

[34]  Ramesh B. Malla,et al.  Simplified Design Method for Braced Double-Skinned Structure in Lunar Application , 1995 .

[35]  Brent Sherwood,et al.  Technical Issues for Lunar Base Structures , 1992 .

[36]  null null,et al.  Overview of Existing Lunar Base Structural Concepts , 1992 .

[37]  W. Hamilton Tidal cycles of volcanic eruptions: fortnightly to 19 yearly periods , 1973 .

[38]  H. Benaroya,et al.  Design of a Lunar Surface Structure. I: Design Configuration and Thermal Analysis , 2015 .

[39]  William F. Mitchell,et al.  How High a Degree is High Enough for High Order Finite Elements? , 2015, ICCS.

[40]  A. Gebhardt,et al.  Process Parameters Development of Selective Laser Melting of Lunar Regolith for On‐Site Manufacturing Applications , 2015 .

[41]  Somnuk Tangtermsirikul,et al.  A model for predicting the specific heat capacity of fly-ash concrete , 2009 .

[42]  R. Reedy,et al.  THE LUNAR ENVIRONMENT , 2008 .

[43]  G. Messing,et al.  Modeling of Solid Particle Formation During Solution Aerosol Thermolysis: The Evaporation Stage , 1993 .

[44]  S. Hayakawa Cosmic background radiation from pregalactic objects , 1984 .

[45]  Leslie Morland,et al.  Stress Analysis for Linear Viscoelastic Materials with Temperature Variation , 1960 .