Vibration analysis of rectangular plates with general elastic boundary supports

[1]  W. L. Li REPLY TO: DISCUSSION ON “FREE VIBRATIONS OF BEAMS WITH GENERAL BOUNDARY CONDITIONS” , 2002 .

[2]  W. L. Li COMPARISON OF FOURIER SINE AND COSINE SERIES EXPANSIONS FOR BEAMS WITH ARBITRARY BOUNDARY CONDITIONS , 2002 .

[3]  W. L. Li,et al.  A FOURIER SERIES METHOD FOR THE VIBRATIONS OF ELASTICALLY RESTRAINED PLATES ARBITRARILY LOADED WITH SPRINGS AND MASSES , 2002 .

[4]  W. L. Li Dynamic Analysis of Beams with Arbitrary Elastic Supports at both Ends , 2001 .

[5]  Stefan Hurlebaus,et al.  AN EXACT SERIES SOLUTION FOR CALCULATING THE EIGENFREQUENCIES OF ORTHOTROPIC PLATES WITH COMPLETELY FREE BOUNDARY , 2001 .

[6]  W. L. Li FREE VIBRATIONS OF BEAMS WITH GENERAL BOUNDARY CONDITIONS , 2000 .

[7]  Marta B. Rosales,et al.  Arbitrary precision frequencies of a free rectangular thin plate , 2000 .

[8]  Jean Nicolas,et al.  A HIERARCHICAL FUNCTIONS SET FOR PREDICTING VERY HIGH ORDER PLATE BENDING MODES WITH ANY BOUNDARY CONDITIONS , 1997 .

[9]  P. Cupiał,et al.  CALCULATION OF THE NATURAL FREQUENCIES OF COMPOSITE PLATES BY THE RAYLEIGH–RITZ METHOD WITH ORTHOGONAL POLYNOMINALS , 1997 .

[10]  P. Laura COMMENTS ON “NATURAL FREQUENCIES OF RECTANGULAR PLATES USING A SET OF STATIC BEAM FUNCTIONS IN RAYLEIGH-RTIZ METHOD“ , 1997 .

[11]  C. C. Lin,et al.  DYNAMIC ANALYSIS OF GENERALLY SUPPORTED BEAMS USING FOURIER SERIES , 1996 .

[12]  Zhou Ding,et al.  NATURAL FREQUENCIES OF RECTANGULAR PLATES USING A SET OF STATIC BEAM FUNCTIONS IN RAYLEIGH-RITZ METHOD , 1996 .

[13]  D. J. Gorman A Comprehensive Study of the Free Vibration of Rectangular Plates Resting on Symmetrically-Distributed Uniform Elastic Edge Supports , 1989 .

[14]  S. Suryanarayan,et al.  Simulation of classical edge conditions by finite elastic restraints in the vibration analysis of plates , 1988 .

[15]  R. L. Ramkumar,et al.  Free vibration solution for clamped orthotropic plates using Lagrangian multiplier technique , 1987 .

[16]  S. M. Dickinson,et al.  On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates , 1986 .

[17]  R. Bhat Natural frequencies of rectangular plates using characteristic orthogonal polynomials in rayleigh-ritz method , 1986 .

[18]  S. L. Edney,et al.  Vibrations of rectangular plates with elastically restrained edges , 1984 .

[19]  R. Blevins,et al.  Formulas for natural frequency and mode shape , 1984 .

[20]  G. B. Warburton,et al.  Response using the Rayleigh‐Ritz method , 1979 .

[21]  P.A.A. Laura,et al.  Transverse vibration of a rectangular plate elastically restrained against rotation along three edges and free on the fourth edge , 1978 .

[22]  S. M. Dickinson,et al.  On the use of simply supported plate functions in the Rayleigh-Ritz method applied to the flexural vibration of rectangular plates , 1978 .

[23]  Arthur W. Leissa,et al.  The free vibration of rectangular plates , 1973 .

[24]  T. E. Carmichael,et al.  THE VIBRATION OF A RECTANGULAR PLATE WITH EDGES ELASTICALLY RESTRAINED AGAINST ROTATION , 1959 .

[25]  G. B. Warburton,et al.  The Vibration of Rectangular Plates , 1954 .