Epiphytic Trees: Relational Consistency Applied to Global Optimization Problems

Much effort has been spent to identify classes of CSPs in terms of the relationship between network structure and the amount of consistency that guarantees a backtrack-free solution. In this paper, we address Numerical Constrained global Optimization Problems (NCOPs) encoded as ternary networks, characterizing a class of such problems for which a combination of Generalized Arc-Consistency (GAC) and Relational Arc-Consistency (RAC) is sufficient to ensure a backtrack-free solution, called Epiphytic Trees. While GAC is a domain filtering technique, enforcing RAC creates new constraints in the network. Alternatively, we propose a branch and bound method to achieve a relaxed form of RAC, thus finding an approximation of the solution of NCOPs. We empirically show that Epiphytic Trees are relevant in practice. In addition, we extend this class to cover all ternary NCOPs, for which Strong Directional Relational k-Consistency ensures a backtrack-free solution.

[1]  Peter van Beek,et al.  Constraint tightness and looseness versus local and global consistency , 1997, JACM.

[2]  Marc Gyssens On the complexity of join dependencies , 1986, TODS.

[3]  David A. Cohen,et al.  The power of propagation: when GAC is enough , 2016, Constraints.

[4]  Gilles Trombettoni,et al.  Upper bounding in inner regions for global optimization under inequality constraints , 2014, J. Glob. Optim..

[5]  Philippe Jégou,et al.  On the Consistency of General Constraint-Satisfaction Problems , 1993, AAAI.

[6]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[7]  Boi Faltings,et al.  Local Consistency for Ternary Numeric Constraints , 1997, IJCAI.

[8]  Gilles Trombettoni,et al.  Inner Regions and Interval Linearizations for Global Optimization , 2011, AAAI.

[9]  R. Baker Kearfott,et al.  An interval branch and bound algorithm for bound constrained optimization problems , 1992, J. Glob. Optim..

[10]  Robert J. Woodward,et al.  A First Practical Algorithm for High Levels of Relational Consistency , 2010, AAAI.

[11]  Frédéric Benhamou,et al.  Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..

[12]  Rina Dechter,et al.  Directional Resolution: The Davis-Putnam Procedure, Revisited , 1994, KR.

[13]  Eugene C. Freuder Synthesizing constraint expressions , 1978, CACM.

[14]  G. Chabert,et al.  New Light on Arc Consistency over Continuous Domains , 2004 .

[15]  Alan K. Mackworth On Reading Sketch Maps , 1977, IJCAI.

[16]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[17]  Yahia Lebbah,et al.  An efficient and safe framework for solving optimization problems , 2007 .

[18]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.

[19]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[20]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[21]  T. Csendes,et al.  A review of subdivision direction selection in interval methods for global optimization , 1997 .

[22]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[23]  Ignacio Araya,et al.  Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects , 2016, J. Glob. Optim..

[24]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[25]  David A. McAllester,et al.  Solving Polynomial Systems Using a Branch and Prune Approach , 1997 .

[26]  Ajay Kumar Bhurjee,et al.  Efficient solution of interval optimization problem , 2012, Math. Methods Oper. Res..

[27]  Toby Walsh,et al.  Domain filtering consistencies for non-binary constraints , 2008, Artif. Intell..

[28]  Pierre Hansen,et al.  A reliable affine relaxation method for global optimization , 2010, 4OR.

[29]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[30]  Peter van Beek,et al.  Local and Global Relational Consistency , 1995, Theor. Comput. Sci..

[31]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[32]  William S. Havens,et al.  HIERARCHICAL ARC CONSISTENCY FOR DISJOINT REAL INTERVALS IN CONSTRAINT LOGIC PROGRAMMING , 1992, Comput. Intell..

[33]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[34]  Arnold Neumaier,et al.  Benchmarking Global Optimization and Constraint Satisfaction Codes , 2002, COCOS.

[35]  Boi Faltings,et al.  Arc-Consistency for Continuous Variables , 1994, Artif. Intell..

[36]  Tamás Vinkó,et al.  A comparison of complete global optimization solvers , 2005, Math. Program..

[37]  Boi Faltings,et al.  Consistency techniques for continuous constraints , 1996, Constraints.

[38]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .