Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation

[1]  Shoji Kimura,et al.  Calculation of ion rejection by extended nernst-planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions , 1991 .

[2]  Y. Ju,et al.  Air slugs entrapped cross‐flow filtration of bacterial suspensions , 1993, Biotechnology and bioengineering.

[3]  Z. Cui,et al.  Gas—liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions☆ , 1994 .

[4]  Zhanfeng Cui,et al.  Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes , 1996 .

[5]  C. Fonade,et al.  How slug flow can enhance the ultrafiltration flux in mineral tubular membranes , 1997 .

[6]  C. Cabassud,et al.  How slug flow can improve ultrafiltration flux in organic hollow fibres , 1997 .

[7]  Z. Cui,et al.  Enhancement of ultrafiltration by gas sparging with flat sheet membrane modules , 1998 .

[8]  C. Cabassud,et al.  Fouling control by air sparging inside hollow fibre membranes—effects on energy consumption , 1998 .

[9]  C. Cabassud,et al.  Characterisation of gas–liquid two-phase flow inside capillaries , 1999 .

[10]  Sheng Chang Filtration of biomass with axial inter-fibre upward slug flow: performance and mechanisms , 2000 .

[11]  M. Mercier-Bonin,et al.  Hydrodynamics of slug flow applied to cross‐flow filtration in narrow tubes , 2000 .

[12]  M. Mercier-Bonin Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane , 2000 .

[13]  J. V. Dijk,et al.  Combined air-water flush in dead-end ultrafiltration , 2001 .

[14]  C. Cabassud,et al.  Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement, cake characteristics and hydrodynamic parameters , 2001 .