Multi-objective Bayesian materials discovery: Application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling

[1]  Edward R. Dougherty,et al.  Experimental Design via Generalized Mean Objective Cost of Uncertainty , 2018, IEEE Access.

[2]  Ichiro Takeuchi,et al.  Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application , 2018, Scientific Reports.

[3]  Xiaoning Qian,et al.  Autonomous efficient experiment design for materials discovery with Bayesian model averaging , 2018, Physical Review Materials.

[4]  Edward R. Dougherty,et al.  Towards an Autonomous Efficient Materials Discovery Framework: An Example of Optimal Experiment Design Under Model Uncertainty , 2018 .

[5]  Turab Lookman,et al.  Multi-objective Optimization for Materials Discovery via Adaptive Design , 2018, Scientific Reports.

[6]  Shaker A. Meguid,et al.  Micromechanics and Nanomechanics of Composite Solids , 2018 .

[7]  D. Lagoudas,et al.  Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys , 2017 .

[8]  Edward R. Dougherty,et al.  Optimal experimental design for materials discovery , 2017 .

[9]  Dimitris C. Lagoudas,et al.  Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi , 2017, Shape Memory and Superelasticity.

[10]  Xiaoning Qian,et al.  Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning , 2016, Proceedings of the National Academy of Sciences.

[11]  Junichiro Shiomi,et al.  Designing Nanostructures for Phonon Transport via Bayesian Optimization , 2016, 1609.04972.

[12]  Koji Tsuda,et al.  COMBO: An efficient Bayesian optimization library for materials science , 2016 .

[13]  James Theiler,et al.  Accelerated search for materials with targeted properties by adaptive design , 2016, Nature Communications.

[14]  Anthony N. Pettitt,et al.  A Review of Modern Computational Algorithms for Bayesian Optimal Design , 2016 .

[15]  James Theiler,et al.  Adaptive Strategies for Materials Design using Uncertainties , 2016, Scientific Reports.

[16]  James Theiler,et al.  A Perspective on Materials Informatics: State-of-the-Art and Challenges , 2016 .

[17]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[18]  Atsuto Seko,et al.  Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. , 2015, Physical review letters.

[19]  Peter I. Frazier,et al.  Bayesian optimization for materials design , 2015, 1506.01349.

[20]  Eckhard Quandt,et al.  Ultralow-fatigue shape memory alloy films , 2015, Science.

[21]  Kirthevasan Kandasamy,et al.  High Dimensional Bayesian Optimisation and Bandits via Additive Models , 2015, ICML.

[22]  Dimitris C. Lagoudas,et al.  Actuation fatigue life prediction of shape memory alloys under the constant-stress loading condition , 2015 .

[23]  A. Evirgen Microstructural Characterization and Shape Memory Response of Ni-Rich NiTiHf and NiTiZr High Temperature Shape Memory Alloys , 2014 .

[24]  D. Lagoudas,et al.  Finite Element Analysis of Precipitation Effects on Ni-Rich NiTi Shape Memory Alloy Response , 2014 .

[25]  M. Friswell,et al.  A review on shape memory alloys with applications to morphing aircraft , 2014 .

[26]  Georg J. Schmitz,et al.  ICMEg – the Integrated Computational Materials Engineering expert group – a new European coordination action , 2014, Integrating Materials and Manufacturing Innovation.

[27]  Dimitris C. Lagoudas,et al.  Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys , 2014 .

[28]  Atsuto Seko,et al.  Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids , 2013, 1310.1546.

[29]  Reginald DesRoches,et al.  On superelastic bending of shape memory alloy beams , 2013 .

[30]  Edward R. Dougherty,et al.  Quantifying the Objective Cost of Uncertainty in Complex Dynamical Systems , 2013, IEEE Transactions on Signal Processing.

[31]  Paul M. Weaver,et al.  Review of morphing concepts and materials for wind turbine blade applications , 2013 .

[32]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[33]  Tarak Ben Zineb,et al.  Simulation of the effect of elastic precipitates in SMA materials based on a micromechanical model , 2012 .

[34]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[35]  L. G. Machado,et al.  Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys , 2012 .

[36]  Warren B. Powell,et al.  The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters using Gaussian Process Regression , 2011, SIAM J. Optim..

[37]  Michael T. M. Emmerich,et al.  Hypervolume-based expected improvement: Monotonicity properties and exact computation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[38]  Daniel J. Inman,et al.  A Review of Morphing Aircraft , 2011 .

[39]  J. Shaw,et al.  Shape Memory Alloys , 2010 .

[40]  Yunzhi Wang,et al.  Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni , 2010 .

[41]  Warren B. Powell,et al.  The Knowledge-Gradient Policy for Correlated Normal Beliefs , 2009, INFORMS J. Comput..

[42]  W. Windl,et al.  Elastic anisotropy of Ni4Ti3 from first principles , 2009 .

[43]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[44]  H. Sehitoglu,et al.  Effect of disperse Ti3N4 particles on the martensitic transformations in titanium nickelide single crystals , 2008 .

[45]  Tarak Ben Zineb,et al.  Micromechanical analysis of precipitate effects on shape memory alloys behaviour , 2008 .

[46]  Farrokh Mistree,et al.  An inductive design exploration method for hierarchical systems design under uncertainty , 2008 .

[47]  Dimitris C. Lagoudas,et al.  Aerospace applications of shape memory alloys , 2007 .

[48]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[49]  G. Eggeler,et al.  Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates , 2006 .

[50]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[51]  D. Schryvers,et al.  Analytical TEM investigations on concentration gradients surrounding Ni4Ti3 precipitates in Ni–Ti shape memory material , 2005 .

[52]  H. Koinuma,et al.  Combinatorial solid-state chemistry of inorganic materials , 2004, Nature materials.

[53]  Huseyin Sehitoglu,et al.  Stress dependence of the hysteresis in single crystal NiTi alloys , 2004 .

[54]  Stefan Seelecke,et al.  Shape memory alloy actuators in smart structures: Modeling and simulation , 2004 .

[55]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[56]  L G Machado,et al.  Medical applications of shape memory alloys. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[57]  D. Beke,et al.  Ni diffusion in near-equiatomic Ni-Ti and Ni-Ti(-Cu) alloys , 2003 .

[58]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[59]  Ken Gall,et al.  Compressive response of NiTi single crystals , 2000, Acta Materialia.

[60]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[61]  Ken Gall,et al.  The Influence of Aging on Critical Transformation Stress Levels and Martensite Start Temperatures in NiTi: Part II—Discussion of Experimental Results , 1999 .

[62]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[63]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[64]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[65]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[66]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[67]  R. Rubinstein,et al.  Optimization of static simulation models by the score function method , 1990 .