Citizen science decisions: A Bayesian approach optimises effort

[1]  Hyun-Chul Kim,et al.  Bayesian Classifier Combination , 2012, AISTATS.

[2]  A. P. Dawid,et al.  Maximum Likelihood Estimation of Observer Error‐Rates Using the EM Algorithm , 1979 .

[3]  Jörg Ontrup,et al.  Use of machine-learning algorithms for the automated detection of cold-water coral habitats: a pilot study , 2009 .

[4]  Paolo Menesatti,et al.  A Novel Morphometry-Based Protocol of Automated Video-Image Analysis for Species Recognition and Activity Rhythms Monitoring in Deep-Sea Fauna , 2009, Sensors.

[5]  J. Kruger,et al.  Unskilled and unaware of it: how difficulties in recognizing one's own incompetence lead to inflated self-assessments. , 1999, Journal of personality and social psychology.

[6]  J. Gutt,et al.  Semi-Automated Image Analysis for the Assessment of Megafaunal Densities at the Arctic Deep-Sea Observatory HAUSGARTEN , 2012, PloS one.

[7]  Steffen Fritz,et al.  Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki , 2015 .

[8]  Graham C. Smith,et al.  Economical crowdsourcing for camera trap image classification , 2018, Remote Sensing in Ecology and Conservation.

[9]  Guoliang Li,et al.  Truth Inference in Crowdsourcing: Is the Problem Solved? , 2017, Proc. VLDB Endow..

[10]  Chris Mellish,et al.  Crowdsourcing Without a Crowd , 2016, ACM Trans. Intell. Syst. Technol..

[11]  Alexandra Branzan Albu,et al.  Expert, Crowd, Students or Algorithm: who holds the key to deep‐sea imagery ‘big data’ processing? , 2017 .

[12]  Carl F. Salk,et al.  Comparing the Quality of Crowdsourced Data Contributed by Expert and Non-Experts , 2013, PloS one.

[13]  Luca Martino,et al.  The Recycling Gibbs sampler for efficient learning , 2016, Digit. Signal Process..

[14]  Tomas J. Bird,et al.  Statistical solutions for error and bias in global citizen science datasets , 2014 .

[15]  Peter Arzberger,et al.  New Eyes on the World: Advanced Sensors for Ecology , 2009 .

[16]  H. Sebastian Seung,et al.  A solution to the single-question crowd wisdom problem , 2017, Nature.

[17]  Margaret Kosmala,et al.  Assessing data quality in citizen science (preprint) , 2016, bioRxiv.

[18]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[19]  S. Asch Studies of independence and conformity: I. A minority of one against a unanimous majority. , 1956 .

[20]  Andrea Wiggins,et al.  Community-based Data Validation Practices in Citizen Science , 2016, CSCW.

[21]  David De Roure,et al.  Zooniverse: observing the world's largest citizen science platform , 2014, WWW.

[22]  H. Sauermann,et al.  Crowd science user contribution patterns and their implications , 2015, Proceedings of the National Academy of Sciences.

[23]  R. Bonney,et al.  Next Steps for Citizen Science , 2014, Science.