“Pretty strong” converse for the private capacity of degraded quantum wiretap channels

In the vein of the recent “pretty strong” converse for the quantum and private capacity of degradable quantum channels [Morgan/Winter, IEEE Trans. Inf. Theory 60(1):317- 333, 2014], we use the same techniques, in particular the calculus of min-entropies, to show a pretty strong converse for the private capacity of degraded classical-quantum-quantum (cqq-)wiretap channels, which generalize Wyner's model of the degraded classical wiretap channel. While the result is not completely tight, leaving some gap between the region of error and privacy parameters for which the converse bound holds, and a larger no-go region, it represents a further step towards an understanding of strong converses of wiretap channels [cf. Hayashi/Tyagi/Watanabe, arXiv:1410.0443 for the classical case].

[1]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[2]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[3]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[4]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[5]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[6]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[7]  Andreas J. Winter Coding theorems of quantum information theory , 1999 .

[8]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[9]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[10]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[11]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[12]  Ning Cai,et al.  Quantum privacy and quantum wiretap channels , 2004, Probl. Inf. Transm..

[13]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[14]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[15]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[16]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[17]  Joseph M Renes,et al.  Structured codes improve the Bennett-Brassard-84 quantum key rate. , 2008, Physical review letters.

[18]  M. Ruskai,et al.  The structure of degradable quantum channels , 2008, 0802.1360.

[19]  A. Winter,et al.  Private capacity of quantum channels is not additive. , 2009, Physical review letters.

[20]  Graeme Smith,et al.  Extensive nonadditivity of privacy. , 2009, Physical review letters.

[21]  F. Dupuis The decoupling approach to quantum information theory , 2010, 1004.1641.

[22]  Nilanjana Datta,et al.  Strong converses for classical information transmission and hypothesis testing , 2011 .

[23]  R. Renner,et al.  The Decoupling Theorem , 2011 .

[24]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[25]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[26]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[27]  Nilanjana Datta,et al.  A Smooth Entropy Approach to Quantum Hypothesis Testing and the Classical Capacity of Quantum Channels , 2011, IEEE Transactions on Information Theory.

[28]  Himanshu Tyagi,et al.  How many queries will resolve common randomness? , 2013, 2013 IEEE International Symposium on Information Theory.

[29]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[30]  Masahito Hayashi,et al.  Non-asymptotic analysis of privacy amplification via Rényi entropy and inf-spectral entropy , 2012, 2013 IEEE International Symposium on Information Theory.

[31]  Marco Tomamichel,et al.  Chain Rules for Smooth Min- and Max-Entropies , 2012, IEEE Transactions on Information Theory.

[32]  Seth Lloyd,et al.  Quantum enigma machines and the locking capacity of a quantum channel , 2013, ArXiv.

[33]  Andreas J. Winter,et al.  “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.

[34]  R. Renner,et al.  One-Shot Decoupling , 2010, 1012.6044.

[35]  Himanshu Tyagi,et al.  Strong converse for a degraded wiretap channel via active hypothesis testing , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[36]  David Elkouss,et al.  Superadditivity of private information for any number of uses of the channel , 2015, Physical review letters.

[37]  Himanshu Tyagi,et al.  Converses For Secret Key Agreement and Secure Computing , 2014, IEEE Transactions on Information Theory.

[38]  Marco Tomamichel,et al.  Quantum Information Processing with Finite Resources - Mathematical Foundations , 2015, ArXiv.

[39]  Himanshu Tyagi,et al.  Secret Key Agreement: General Capacity and Second-Order Asymptotics , 2014, IEEE Transactions on Information Theory.

[40]  Himanshu Tyagi,et al.  Secret Key Agreement: General Capacity and Second-Order Asymptotics , 2016, IEEE Trans. Inf. Theory.