Extremal G-free induced subgraphs of Kneser graphs

The Kneser graph $\KG_{n,k}$ is a graph whose vertex set is the family of all $k$-subsets of $[n]$ and two vertices are adjacent if their corresponding subsets are disjoint. The classical Erd{\H o}s-Ko-Rado theorem determines the cardinality and structure of a maximum induced $K_2$-free subgraph in $\KG_{n,k}$. As a generalization of the Erd{\H o}s-Ko-Rado theorem, Erd{\H o}s proposed a conjecture about the maximum order of an induced $K_{s+1}$-free subgraph of $\KG_{n,k}$. As the best known result concerning this conjecture, Frankl~[{\it Journal of Combinatorial Theory, Series A, 2013}], when $n \geq(2s+1)k-s$, gave an affirmative answer to this conjecture and also determined the structure of such a subgraph. In this paper, generalizing the Erd{\H o}s-Ko-Rado theorem and the Erd{\H o}s matching conjecture, we consider the problem of determining the structure of a maximum family $\A$ for which $\KG_{n,k}[\A]$ has no subgraph isomorphic to a given graph $G$. In this regard, we determine the size and the structure of such a family provided that $n$ is sufficiently large with respect to $G$ and $k$. Furthermore, for the case $G=K_{1,t}$, we present a Hilton-Milner type theorem regarding above-mentioned problem, which specializes to an improvement of a result by Gerbner and et al.~[{\it SIAM Journal on Discrete Mathematics, 2012.}]

[1]  Richard M. Wilson,et al.  The exact bound in the Erdös-Ko-Rado theorem , 1984, Comb..

[2]  Gyula O. H. Katona A simple proof of the Erd?s-Chao Ko-Rado theorem , 1972 .

[3]  A. Schrijver,et al.  Vertex-critical subgraphs of Kneser-graphs , 1978 .

[4]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[5]  P. Frankel,et al.  An Erdos-Ko-Rado theorem for direct products , 1996 .

[6]  P. FRANKL,et al.  An Extremal Problem for two Families of Sets , 1982, Eur. J. Comb..

[7]  Gyula O. H. Katona,et al.  Union-Intersecting Set Systems , 2015, Graphs Comb..

[8]  Béla Bollobás,et al.  TRANSFERENCE FOR THE ERDŐS–KO–RADO THEOREM , 2015, Forum of Mathematics, Sigma.

[9]  Jirí Matousek,et al.  A Combinatorial Proof of Kneser’s Conjecture* , 2004, Comb..

[10]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[11]  Hao Huang,et al.  The Size of a Hypergraph and its Matching Number , 2011, Combinatorics, Probability and Computing.

[12]  Peter Frankl,et al.  On the maximum number of edges in a hypergraph with given matching number , 2012, Discret. Appl. Math..

[13]  Alex D. Scott,et al.  Hypergraphs of Bounded Disjointness , 2014, SIAM J. Discret. Math..

[14]  Peter Frankl,et al.  Improved bounds for Erdős' Matching Conjecture , 2013, J. Comb. Theory, Ser. A.

[15]  Jun Wang,et al.  Erdös-Ko-Rado-Type Theorems for Colored Sets , 2007, Electron. J. Comb..

[16]  Peter Frankl,et al.  On Matchings in Hypergraphs , 2012, Electron. J. Comb..

[17]  P. Erdos,et al.  On maximal paths and circuits of graphs , 1959 .

[18]  Chris D. Godsil,et al.  A new proof of the Erdös-Ko-Rado theorem for intersecting families of permutations , 2007, Eur. J. Comb..

[19]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[20]  David R. Wood,et al.  Treewidth of the Kneser Graph and the Erdős-Ko-Rado Theorem , 2013, Electron. J. Comb..

[21]  B. Bollobás On generalized graphs , 1965 .

[22]  Peter Frankl,et al.  On intersecting families of finite sets , 1978, Bulletin of the Australian Mathematical Society.

[23]  TOMASZ LUCZAK,et al.  On Erdős' extremal problem on matchings in hypergraphs , 2012, J. Comb. Theory, Ser. A.

[24]  A. J. W. Hilton,et al.  SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .

[25]  Conditional Chromatic Numbers with Forbidden Cycles , 1993 .

[26]  Dániel Gerbner,et al.  Almost Intersecting Families of Sets , 2012, SIAM J. Discret. Math..

[27]  Béla Bollobás,et al.  On the stability of the Erdős-Ko-Rado theorem , 2016, J. Comb. Theory, Ser. A.

[28]  P. Erdos A PROBLEM ON INDEPENDENT r-TUPLES , 1965 .

[29]  D. E. Daykin,et al.  SETS OF INDEPENDENT EDGES OF A HYPERGRAPH , 1976 .

[30]  Cheng Yeaw Ku,et al.  An Erd˝s-Ko-Rado theorem for partial permutations , 2006, Discret. Math..

[31]  D'aniel Gerbner,et al.  Stability Results for Vertex Turán Problems in Kneser Graphs , 2018, Electron. J. Comb..

[32]  Zoltán Füredi,et al.  A new short proof of the EKR theorem , 2012, J. Comb. Theory, Ser. A.

[33]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[34]  Peter Frankl,et al.  Erdös–Ko–Rado Theorem—22 Years Later , 1983 .

[35]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[36]  Gil Kalai,et al.  Intersection patterns of convex sets , 1984 .