Extremal G-free induced subgraphs of Kneser graphs
暂无分享,去创建一个
[1] Richard M. Wilson,et al. The exact bound in the Erdös-Ko-Rado theorem , 1984, Comb..
[2] Gyula O. H. Katona. A simple proof of the Erd?s-Chao Ko-Rado theorem , 1972 .
[3] A. Schrijver,et al. Vertex-critical subgraphs of Kneser-graphs , 1978 .
[4] P. Erdös,et al. On the structure of linear graphs , 1946 .
[5] P. Frankel,et al. An Erdos-Ko-Rado theorem for direct products , 1996 .
[6] P. FRANKL,et al. An Extremal Problem for two Families of Sets , 1982, Eur. J. Comb..
[7] Gyula O. H. Katona,et al. Union-Intersecting Set Systems , 2015, Graphs Comb..
[8] Béla Bollobás,et al. TRANSFERENCE FOR THE ERDŐS–KO–RADO THEOREM , 2015, Forum of Mathematics, Sigma.
[9] Jirí Matousek,et al. A Combinatorial Proof of Kneser’s Conjecture* , 2004, Comb..
[10] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .
[11] Hao Huang,et al. The Size of a Hypergraph and its Matching Number , 2011, Combinatorics, Probability and Computing.
[12] Peter Frankl,et al. On the maximum number of edges in a hypergraph with given matching number , 2012, Discret. Appl. Math..
[13] Alex D. Scott,et al. Hypergraphs of Bounded Disjointness , 2014, SIAM J. Discret. Math..
[14] Peter Frankl,et al. Improved bounds for Erdős' Matching Conjecture , 2013, J. Comb. Theory, Ser. A.
[15] Jun Wang,et al. Erdös-Ko-Rado-Type Theorems for Colored Sets , 2007, Electron. J. Comb..
[16] Peter Frankl,et al. On Matchings in Hypergraphs , 2012, Electron. J. Comb..
[17] P. Erdos,et al. On maximal paths and circuits of graphs , 1959 .
[18] Chris D. Godsil,et al. A new proof of the Erdös-Ko-Rado theorem for intersecting families of permutations , 2007, Eur. J. Comb..
[19] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .
[20] David R. Wood,et al. Treewidth of the Kneser Graph and the Erdős-Ko-Rado Theorem , 2013, Electron. J. Comb..
[21] B. Bollobás. On generalized graphs , 1965 .
[22] Peter Frankl,et al. On intersecting families of finite sets , 1978, Bulletin of the Australian Mathematical Society.
[23] TOMASZ LUCZAK,et al. On Erdős' extremal problem on matchings in hypergraphs , 2012, J. Comb. Theory, Ser. A.
[24] A. J. W. Hilton,et al. SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .
[25] Conditional Chromatic Numbers with Forbidden Cycles , 1993 .
[26] Dániel Gerbner,et al. Almost Intersecting Families of Sets , 2012, SIAM J. Discret. Math..
[27] Béla Bollobás,et al. On the stability of the Erdős-Ko-Rado theorem , 2016, J. Comb. Theory, Ser. A.
[28] P. Erdos. A PROBLEM ON INDEPENDENT r-TUPLES , 1965 .
[29] D. E. Daykin,et al. SETS OF INDEPENDENT EDGES OF A HYPERGRAPH , 1976 .
[30] Cheng Yeaw Ku,et al. An Erd˝s-Ko-Rado theorem for partial permutations , 2006, Discret. Math..
[31] D'aniel Gerbner,et al. Stability Results for Vertex Turán Problems in Kneser Graphs , 2018, Electron. J. Comb..
[32] Zoltán Füredi,et al. A new short proof of the EKR theorem , 2012, J. Comb. Theory, Ser. A.
[33] P. Erdos,et al. A LIMIT THEOREM IN GRAPH THEORY , 1966 .
[34] Peter Frankl,et al. Erdös–Ko–Rado Theorem—22 Years Later , 1983 .
[35] László Lovász,et al. Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.
[36] Gil Kalai,et al. Intersection patterns of convex sets , 1984 .